Combating Replay Attacks Against Voice Assistants

SWADHIN PRADHAN, UT Austin, USA
WEI SUN, UT Austin, USA

GHUFRAN BAIG, UT Austin, USA

LILI QlU, UT Austin, USA

Recently, there has been a surge in the popularity of voice-first devices, such as Amazon Echo, Google Home, etc. While these
devices make our life more convenient, they are vulnerable to new attacks, such as voice replay. We develop an end-to-end
system to detect replay attacks without requiring a user to wear any wearable device. Our system, called REVOLT, has several
distinct features: (i) it intelligently exploits the inherent differences between the spectral characteristics of the original and
replayed voice signals, (ii) it exploits both acoustic and WiFi channels in tandem, (iii) it utilizes unique breathing rate extracted
from WiFi signal while speaking to test the liveness of human voice. After extensive evaluation, our voice component yields
Equal Error Rate (EER) of 0.88% and 10.32% in our dataset and ASV2017 dataset, respectively; and WiFi based breathing
detection achieves Breaths Per Minute (BPM) error of 1.8 up to 3m distance. We further combine WiFi and voice based
detection and show the overall system offers low false positive and false negative when evaluated against a range of attacks.
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1 INTRODUCTION

Motivation: Voice is becoming a popular modality of user interface, thanks to the recent advances in speech
processing [12]. Voice based interaction is attractive since it is intuitive, operates over longer range, and supports
complex queries on a single go. Hence, the voice-based systems are gaining tremendous traction [1], as evidenced
by a wide variety of products from several companies, such as Amazon, Google, Apple [39]. These devices enable
us to control appliances at home, provide valuable information (e.g., weather, news, recipe), and answer questions.

However, voice is an open channel and inherently insecure. Voice is prone to impersonation, synthesis,
or replay attacks [62]. Note that, although the deep learning assisted voice-based user identification is quite
main-stream [11], it is vulnerable under replay attacks (i.e., when one plays pre-recorded or synthesized voice
commands). Furthermore, with the advances in voice synthesis techniques [13, 21] and different ways to record
user’s actual voices [30], the voice replay attack has become increasingly harder to detect. Below are a few example
scenarios that either happened or are likely to happen:

e Opening a smart-door when no one is at home, which results in burglary.
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e Using a voice-first device to start a car without the owner’s knowledge.
e Sending SMS or placing a call to premium numbers without one’s knowledge.
e Intrusive advertisement by activating the voice-first device like Burger King did recently [6].

To avoid these kinds of situations, we should detect the liveness of the voice, i.e., the command is actually uttered
by the legitimate user at that very moment.

Challenges: The insecurity of voice-based systems against audible replay attack has been recognized. [62]
proposes a wearable that uses voice-correlated accelerometer signature for the detection purpose. However,
carrying a device for liveness detection can be cumbersome. [59] uses magnetometer signature of commercial
speakers to prevent replay attack. Similarly, a few recent works have attempted to read the lip movement through
audio or WiFi to match with the uttered sound [76, 79, 91, 92]. However, these approaches on voice liveness
detection only work within 10cm even after a rigorous training and calibration, which is insufficient for practical
usage scenarios. Camera-based detection can be effective but is vulnerable to lighting conditions or occlusion.
Moreover, camera-based approach is much more intrusive: many users are comfortable using voice to interact
with home assistants but have serious concerns with cameras taking pictures and videos of them [2]. In general,
developing a wearable-free long-range non-intrusive system to combat against audible voice-replay attack poses a
significant challenge.

Our Approach: In this paper, we aim to design a voice-liveness detection system, called REplay-resilient VOice
Legitimacy Tester (REVOLT), to prevent replay attack by maintaining the following design goals: (i) Users do not
need to wear any devices, (ii) There are no cameras to preserve privacy, (iii) It should support up to a few meters
for typical smart speaker usage scenarios. To achieve these goals, we use both voice and WiFi channels together
to differentiate between live vs. replayed voice. Since voice and WiFi channels have different characteristics, they
are complementary and can be used together to improve accuracy.

We first analyze replayed and original voice and find replayed voice introduces significant distortions to both
low and high frequency components. Such distortions affect both spectral and phase features of the voice, and
are present across a wide range of speakers, microphones, sampling rates [67], and environments. Based on these
insights, we identify effective voice features to detect replay. Next, we use changes in the WiFi CSI traces to detect
breathing to verify human presence, where WiFi CSI [63] captures the channel characteristics such as attenuation
and delay across different propagation paths and is measured using known transmission symbols. To improve
the detection range, we estimate the direction of arrival (DoA) of voice and move the WiFi directional antennas
towards the user to strengthen breathing signals. We further leverage the observation that a user’s breathing rate
slows down noticeably during speech to check if the voice comes from a live user on site. Finally, we use the
changes in wireless CSI spectrograms to develop a convolution neural network model (CNN) to further prevent
sophisticated insider replay attack, which manipulates breathing by pretending to speak during the replay. We
evaluate each of these stages using real experimental traces. Our results show that our system achieves high
accuracy. This work is a first-step toward enhancing the security of voice-first devices in a longer range. Our
contributions can be summarized as follow:

e We develop voice-based replay detection and give insights about why certain voice features are useful in
distinguishing the original and replayed voice.

o We leverage the WiFi CSI to detect human presence and live speaking. To the best of our knowledge, we are
the first that exploits the synchronized changes in voice and breathing to detect replay attacks.

e We implement a prototype of REVOLT on a commodity hardware, and conduct extensive evaluation to
demonstrate its effectiveness.
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Outline: The rest of the paper is organized as follow. We first describe attack models in Sec. 2. Then we give an
overview of our REVOLT in Sec. 3. We describe and evaluate different modules with their respective operations
within REVOLT in Sec. 4, Sec. 5, and Sec. 6. Next, we provide end-to-end evaluation of REVOLT in Sec. 7, while
discussing different modes. We review related work in Sec. 8 in detail and discuss about the limitations in Sec. 9.
We conclude with highlighting the importance of REVOLT in Sec. 10.

2 THREAT MODEL

In our threat model, an attacker can collect voice samples from the victim, or synthesize the voice [9, 13]
commands. Then the attacker replays the voice commands through a speaker to bypass the voice-enabled systems.
We classify the threats into the following three categories:

e Remote voice replay: An attacker has access to a speaker inside a home and can remotely replay the recorded
or synthesized voice using the compromised device. Such attacks are feasible as shown in [88]. To make the
attacks harder to detect, the attacker can further post-process the voice samples to mimic live voice.

e Local voice replay: The attacker is physically close to the smart speaker and can replay the pre-recorded voice
e.g., using the attacker’s phone or speaker.

e Sophisticated replay: The attacker not only replays but also manipulates his physiological signals. The attacker
could silently speak without actually emitting the sound during the replay to mimic the breathing pattern of
a live speaker.

In this paper, we do not consider human-based voice impersonation attack, since this is widely studied in
the related works (e.g., [68, 78, 98]). These works generally detect the impersonation by exploiting the unique
characteristics in an individual’s voice. Replaying a pre-recorded voice poses a different and challenging issue
since voice synthesis or stealthy recording can capture or mimic the victim’s voice to evade the previous detection
strategies. Therefore, our focus is mainly to prevent voice replay attacks.

3 OVERVIEW

In the following section, we give an overview of our system architecture and work flow.

3.1 System Overview
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Fig. 1. Architecture of REVOLT.

REVOLT is a wearable-free long-range non-invasive solution to defend against voice replay attacks. Our key
idea in this work is to exploit voice and WiFi signals together to prevent voice replay attacks.
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As illustrated in Fig. 1, our system first detects the presence of incoming voice. Then it runs both voice module
for voice analysis and WiFi module for breathing detection and analysis. These modules start recording the data
simultaneously. At the first stage, to strengthen the received WiFi signal for breathing analysis, our system
computes the Direction-of-Arrival (DoA) of the voice source based on a wake-up word like Alexa and directs the
WiFi directional antenna in that direction. Then the WiFi module uses the WiFi CSI to detect the breathing signal
for user presence identification. Simultaneously, voice module records the voice signal and extracts the voice
features like LFCC, MFCC etc. from the spectrogram (described in detail in Sec. 4.1) and applies a pre-trained
supervised machine learning algorithm to distinguish between the original and replayed voice (as shown in Fig. 1.
Furthermore, the WiFi Module checks if the breathing rate changes whenever the voice is active. Finally, the WiFi
Module uses a pre-trained convolution neural network model (CNN) to detect whether the breathing changes are
natural or manipulated based on the voice and WiFi features (to prevent sophisticated replay).

Note that, our WiFi analysis requires the user is quasi-static. When the user moves, it automatically extracts the
period when the user is static and uses the WiFi traces from the static period for detection. If the user continuously
moves, it flags as a potential attacker and requires additional authentication.
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Fig. 2. Work-flow of REVOLT.

Fig. 2 shows the work-flow of our algorithm within the previously described modules. The voice module uses
the pre-trained machine learning model to detect whether the voice command is replayed or not. If it passes
this test, the WiFi module filters out the period in which the WiFi CSI amplitude changes substantially. Then
it detects the presence of breathing signature to ascertain the human presence. If it passes this checking, we
use the voice module and WiFi module together to check if the breathing pattern is synchronized with voice.
In this way, we can detect if the voice is coming from the user whose breathing signal is being detected. At
the final stage, we will invoke the CNN module to check the liveness of the user’s voice to prevent against a
sophisticated attacker controlling his breathing to synchronize with the replayed voice. If it fails at any stage,
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the voice command is flagged as potential replayed voice, which include all red nodes in the tree; additional
authentication is required as shown in Fig. 2. If it passes all stages, the voice command is considered genuine.
Note that our system is designed to prevent different types of replay attacks. We can use the security policy as
described below to configure the detection thresholds.

3.2 Security Policy

We observe that different commands require different levels of security. For example, playing music is not as
mission critical as opening a door/window or starting a car. Therefore, we can allow users and product designers
to group the commands into a few security classes, each associated with a certain security policy. For example,
for mission critical commands, we should be more conservative and minimizing the false positive (i.e., flagging
replayed voice as live). For less critical commands, we can tolerate some false positive in return for reduced
false negative (i.e., flagging live voice as replayed and requiring unnecessary re-authentication). We select the
appropriate parameters in REVOLT according to the security policy. To demonstrate this, in Sec. 7, we have
described to operational settings, namely, Critical and Casual, which shows desirable false positive and false
negative percentages.

4 VOICE-BASED REPLAY DETECTION

In this section, we introduce the Voice Module of REVOLT. We first describe the spectral and phase structure of
live voice vs. replayed voice. Based on the insights, we identify new features for detecting replayed voice. Then
we describe our evaluation methodology and results.

4.1 Traditional Voice Features

We extract several important spectral features from voice to detect replayed voice. They include Mel-Frequency
Cepstral Coefficient (MFCC), Linear Frequency Cepstral Coefficient (LFCC), Relative Phase Shift (RPS), which
will be described below. These features essentially aim to capture frequency and phase structure of the voice
segment. We have also tried several other features, such as IMFCC, CQCC, PD etc. [99], but find that MFCC,
LFCC, and RPS are the best features and also complement well with each other.

MFCC: Cepstral coefficients or cepstrum features are the derived time-frequency features. It essentially de-
convolves the voice source and voice filter by applying frequency transformation twice. The most widely used
cepstrum features are Mel-frequency cepstral coefficients (MFCC) [80]. It models the way in which a human
perceives sound by using logarithmic filter banks. Therefore it has higher resolution in lower frequency spectrum.
LFCC: It is the same as MFCC but uses linear filter-banks across the entire frequency. Therefore, it has better
resolution at the high frequency due to its use of linear filter banks instead of logarithmic filter banks in MFCC.
Relative Phase Shift (RPS): Relative Phase Shift (RPS) transforms instantaneous phases from two harmonic
frequencies into a relative measure against a common reference phase [74]. This measure removes the linear
phase component and makes the phase structure more clear. RPS assumes a harmonic model with N harmonics

N
for voice segments of the form: S(t) = Y, Ar(t)cos[Pk ()], where Ay is the amplitude. ¢y is the instantaneous
=1

phase of the kth harmonic and computed_as: i = 2mk fit + O = 27x ft + O where fi. = kf; is the kth harmonic.
We denote the fundamental frequency as f; and the initial phase offset as 0. If we assume the fundamental
frequency as our reference and for simplicity 6; = 0, we can solve for 0y (now called the RPS) as follow:

¢1(ta) _ ¢k(ta) - ek
2rfi - 27 fx

1)

or
RPS,i.e..0 = $i(ta) — kb (t) @)
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Therefore, we get more smooth phase structure (Fig. 6(b)) in RPS than random instantaneous phase as shown in
Fig. 6(a). To further parameterize the RPS described in Eq. 2, we perform mel-filtering, unwrapping, and DCT
transformation.

4.2 Datasets Used
We evaluate our voice-based detection using both ASV2017 Dataset [4] and our dataset.

ASV2017 Dataset: The dataset is primarily based on the recent text-dependent RedDots corpus [70] and its
replayed version using 42 speakers and 5 microphones under 123 environment configurations [3, 99]. Experiment-
ing using such a large number of speakers and microphones in the dataset helps to develop general detection
schemes that are robust against artifacts of specific speakers or microphones. The audio is captured at a sampling
rate of 16KHz. The training set consists of 10 speakers and 3 microphones, and the testing set consists of 24
speakers and 110 replay configurations (i.e., the number of combinations of speakers, microphones, and locations).
The evaluation set contains around 50,000 audio files. Refer to [3, 4, 99] for more details.

Our Dataset: In addition, we collect data from 10 users (4 women and 6 men between 25 to 45 year old) using
9 speakers, 9 microphones, and across 5 different locations. The dataset contains 6 commands, which includes
3 short utterances: Alexa, Siri, Cortana and 3 most popular Alexa commands like Alexa, what is the weather,
Alexa, set a timer, and Alexa, play some music. We record the audio at a sampling rate of 44.1 KHz with a varying
distances from 10cm to 250cm. We use 9 different microphones: a standard USB microphone [41], macbook pro
2014 microphone, macbook pro 2017 microphone [46], Google Pixel 2 microphone, Motorolla G5 microphone,
Xiaomi MI 8 microphone [48], Tonor karaoke microphone [47], Apple iPad Pro microphone [42], and an Samsung
S7 microphone [33]). We also use 9 different speakers for replay: Mokcao style Bluetooth Speaker [24] (for its
smaller size), Logitech Speaker System Z323 [20], Cyber Acoustics speaker [40], JBL Flip4 bluetooth speaker [43],
macbook pro 2017 speaker, Google Pixel 2 speaker, Motorolla G5 speaker, Apple iPad Pro speaker [42], and the
Samsung S7 speaker [33]. We use these speakers and microphones since they cover a wide range of types, sizes,
and quality. In addition, we also perform our experiments in different rooms: a lab, a conference room, an open
stair-case area, an apartment living room, and an apartment bed-room and vary the background noise level to
evaluate the robustness of our system. For noise related experiments, we add white noise, musical instruments,
conversations, singing, or whispering to the live or recorded voice samples.

4.3 Insights

Next, we analyze voice spectral and phase structure diagrams based on the above features. We use the datasets
described in Sec. 4.2 for our analysis.
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(a) Live Voice Segment. (b) Replayed Voice Segment.

Fig. 3. Difference in Linear Frequency Spectrogram.
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(i) Frequency Characteristics: Fig. 3 plots the linear time-frequency spectral diagrams of live vs. replayed voice,
where the x and y axes in the graph denote the time and frequency, respectively. In the replay attack, the attacker
records the voice of a target speaker and later plays it back, as depicted in Fig. 4. Therefore, replayed voice
goes through more conversion steps than live voice. As shown in Figure 3, the high frequency has significant
differences. In particular, from 7KHz to 16KHz, there is more spectral energy present in the live voice than
the replayed voice. This happens for the following two reasons: (i) non-flat frequency response of speakers
and microphones especially at high frequency since these frequencies are rare in typical voice and speakers
are not optimized for these bands, and (ii) replayed voice goes through a microphone twice and each time it
incurs aliasing at the analog-to-digital converter (ADC) (Fig. 4), which introduces additional distortion due to
quantization error.
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Fig. 4. Genuine and Replay File Generation.

In addition, we observe stronger replayed voice below 4 KHz because human ears are biased toward the
frequency within 4 KHz according to psycho-acoustics study [26, 66] and speakers tend to strengthen signals
at these frequencies. As mel-filtering zooms in this lower frequency region, we can observe in Fig. 5 that the
replayed voice (Fig. 5(b)) has higher energy in these lower frequency bands (specifically 100 Hz to 400 Hz). In
comparison, as shown Fig. 5(a), the energy decay more gradually with the frequency in the live voice. This is true
across all types of speakers used in both our and ASV2017 datasets (Sec. 4.2). (ii) Phase Characteristics: We
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(a) Live Voice Segment. (b) Replayed Voice Segment.
Fig. 5. Difference in Mel-frequency Spectrogram.

also study the relative phase structure through RPS spectrogram of live vs. replayed voice. Fig. 6(b) and Fig. 6(c)
compare the RPS spectral diagrams of the live vs. replayed voice, where the x and y axes in the graph denote time
and frequency, respectively. As they show, there are clear stripes in the phase graph of live voice. In comparison,
the stripes in the replayed voice are evident only in the low frequency. This holds true across all speakers and
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users in our study ((Sec. 4.2)). The stripes in the phase graph of the original voice is due to vocal-fold vibration
driven human speech production [14, 35, 94]. The absence of clear stripes of the replayed voice is also caused by
speakers’ distortion and ADC quantization error incurred by extra DAC and ADC operations in replay as shown
in Fig. 4.
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(a) Instant Phase of Voice Segment. (b) RPS of Live Voice Segment. (c) RPS of Replayed Voice Segment.

Fig. 6. Difference in Phase Structure Spectrogram.

4.4  Our Voice Features

(i) Combining MFCC-LFCC: Since we observe clear difference in frequencies above 10 KHz or below 8 KHz
between the original and replayed voice, we seek a frequency spectrogram that provide more granularity at those
frequencies. Specifically, we zoom into the frequencies above 10 KHz and below 8 KHz. We use linear filters at
higher frequencies and logarithmic filters at lower frequency by extracting the 26 coefficients from LFCC (from
49 to 75), which corresponds to frequencies above 4 KHz and extracting the first 64 coefficients from MFCC,
which corresponds to frequencies below 8 KHz. Here the coefficients mean the number of frequency bands in a
filter bank. These combined features are new and will be shown more effective to detect replay.

(ii) Combining Frequency and Phase Features: We further combine frequency and phase based features to
enhance the accuracy by combining the outputs from the two classifiers using these features.

4.5 Machine Learning for Replay Detection

We use the following machine learning models and their ensemble to detect replay: SVM is effective when we
know which features are important and there are a small number of important features, and GMM can learn the
important features from a larger number of features but takes more time to build a model. GMM is common in
the speech community. Furthermore, the choice of these machine learning models are motivated by the chosen
features depicting clear difference between the live vs. replayed voice.

SVM: Support vector machines (SVM) is a widely used supervised machine learning algorithm. It finds one or
more hyper-planes to separate training data belonging to different classes. There are linear and non-linear SVM.
We use a non-linear SVM with RBF kernel from libSVM library [18] after trying out different possibilities. We
train the SVM with 5-fold cross validation in our dataset by splitting the data into different user groups. The
training and testing data do not have the same user voice command. For the ASV2017 dataset, we train using the
training and development data and test using the evaluation data.

GMM: Gaussian Mixture Models (GMM) is a popular probabilistic model to capture normally distributed sub-
populations within an overall population. This technique assumes that all the data points are generated from a
mixture of a finite number of Gaussian distributions with unknown parameters. We train two Gaussian mixture
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Table 1. EER of different features on our dataset. The last Table 2. EER of different Features on ASV2017 Dataset. The

two rows in bold represent the results from our features. The last two rows in bold represent the results from our features.

numbers inside () represent the number of coefficients used The numbers inside () represent the number of coefficients

in the filter-bank. used in the filter-bank.
’Feature HClassiﬁer‘MVN‘EER ‘ ’Feature HClassiﬁer‘MVN‘EER ‘
LFCC (90) GMM No [4.82 LFCC (90) GMM No [29.39
MFCC (90) GMM No [4.95 MFCC (90) GMM No [30.32
LFCC (90) GMM Yes |14.93 LFCC (90) GMM Yes |18.92
MFCC (90) GMM Yes |18.41 MFCC (90) GMM Yes |[17.66
LFCC (90), A, A? GMM No [8.01 LFCC (90), A, A? GMM Yes [19.02
MFCC (90), A, A? GMM No [10.57 MFCC (90), A, A? GMM Yes |17.49
LFCC (90), MFCC (90) || GMM No |3.83 LFCC (90), MFCC (90) || GMM Yes |15.12
RPS (64) GMM No |7.73 RPS (64) GMM No [22.05
LFCC (90) SVM Yes [4.21 LFCC (90) SVM Yes |16.63
MFCC (90) SVM Yes [1.49 MFCC (90) SVM Yes ([13.19
LFCC (90), A, A? SVM Yes [4.20 LFCC (90), A, A? SVM Yes |17.91
MFCC (90), A, A? SVM Yes [2.18 MFCC (90), A, A? SVM Yes |15.51
LFCC (90), MFCC (90) ||SVM Yes |1.56 LFCC (90), MFCC (90) ||SVM Yes |13.56
LFCC-MFCC SVM Yes |1.11 LFCC-MFCC SVM Yes [12.13
LFCC-MFCC/RPS |Fusion |Yes |0.88 LFCC-MFCC/RPS ||Fusion |Yes [10.32

models using live and replayed voice, and compute the likelihood of new voice samples with respect to these
models. We train GMM using RPS as RPS has a continuous sequence pattern and correlated data across different
frames. We also test the impact of feature normalization through Mean-Variance Normalization (MVN) [84].

4.6 Implementation

As silent periods of voice segments has no apparent benefit in training/testing, we extract the active voice using a
utility within covarep [8] package. We use librosa [17] package to get MFCC and design linear triangular filter to
get LFCC. For the phase feature, we use covarep [8] package to extract the effective RPS pattern. We use sklearn
libsvm to train SVM using the MFCC-LFCC feature and use vifeat [38] package to train GMM using the RPS
feature. We further combine the output from both models by learning the weights using bosaris toolkit [5].

4.7 Evaluation Results

We quantify the accuracy using equal error rates (EER), which is the error rate when False Negative Rate (FNR)
equals False Positive Rate (FPR). Following the definitions in [99], false negative denotes live voice considered
as replayed and false positive denotes replayed voice considered as live. The lower the EER, the better the
performance. Apart from the features described in Sec. 4.1, we also calculate delta (A) (i.e., the difference between
consecutive Cepstral Coefficients (CC)) and double delta (A?) features (i.e., the difference between Delta). Table 1
and Table 2 show the EER results of different features, machine learning algorithms, and feature normalization
techniques in our and ASV2017 datasets, respectively. We make several observations. First, our choices of filter
banks in LFCC and MFCC out-performs the standard LFCC and MFCC by focusing on the frequencies that matter
the most. Using phase in addition to LFCC-MFCC further reduces the error from 1.11 to 0.88 in our dataset and
from 12.13 to 10.32 in the ASV2017 dataset.
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Fig. 7. ROC Curve and EER Bar-graph.

Impact of Different Factors: To evaluate the robustness of our voice-based replay detection module, we also
test in different conditions (e.g., increasing the background noise, and changing the recording room environments).
As illustrated in the ROC curve (Fig. 7(a)), the EER (dotted diagonal line) remains within 5% in all cases. We
use house-hold sounds such as conversation, door opening, utensil sound from [32], human conversation, and
musical sound, as background noise; and we initially use two different locations: a conference room and an
apartment room for testing, and apply the model trained using the data collected from the lab. Later, to evaluate
the generalization and robustness of our voice module, we include three more locations: an open stair-case area,
an apartment living room, and an apartment bed-room, 6 more speaker-microphone pairs, different background
noise levels, and different voice intensity levels of speech utterances, in our testing dataset. In the following, we
show that the accuracy remains high even with more diverse locations.
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both live and replayed voice samples. microphone pairs and report the EER fromrooms and report the EER from randomly
randomly drawn samples. drawn samples across all rooms.

Fig. 8. Impact of Diversity in Training in EER.

In experiments, the basic pattern of phase or frequency spectrogram does not change significantly. Therefore,
the EER remains low. Background noise impacts both the live and replayed voice spectrograms equally and thus
does not degrade the EER significantly. Next, we vary the audio length. In the Fig. 7(b), we can see that for a
very small duration (0.1sec), the EER is very high (30%) due to the lack of the differentiating features in such a
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small duration. However, when the audio duration lasts 1sec (e.g., Alexa takes around 0.8sec to pronounce), the
EER becomes only 5.5% since more distinguishable features in both frequency and phase space become available.
We further add different amount of background noise to vary the SNR of both live and replayed voice. Fig. 8(a)
shows that the EER degrades by within 7.8% even under low SNR (10 — 20 dB).

Next we evaluate the impact of the number of locations used for training. For all cases, we draw 1500 voice
samples for training regardless of the number of locations used for training. In this way, we can ensure the
accuracy difference comes from the diversity in the training locations instead of the increased number of samples.
We generate the testing data by randomly drawing 8000 voice samples from the remaining data sets, which
contain different locations and device pairs. Fig. 8(c) shows that training from one room yields a high EER
(5.92-11.57) in the testing data; training from two different types of locations is sufficient to get reasonable EER
(2.9%) in the testing data-set collected from more locations.

We further evaluate the impact of the number of device pairs. As before, we also limit the total training data to
1500 voice samples. As shown in Fig. 8(b), when there is only one device pair used for training, the EER is 25% to
29%. However, as soon as we include 3 device pairs, the EER reduces to below 3.5%.

To better understand the impact of data diversity on our voice model, we focus on the EER of a single room or
a single device scenarios. Fig. 9(a) show the EER is generally high using the training from one device (25-35%) or
one location (4-12%) (shown in Fig. 9(b)). These results show that device and environment diversities are both
important but including only a small number of device pairs and environments is sufficient to get a general model
that works for a wider range of scenarios.
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0 052 -
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Types of Device Pair Rooms

(a) EER of samples drawn from all device (b) EER of samples drawn from all rooms as
pairs as we vary the device pair used. we vary the room used for training.

Fig. 9. Impact of Single Device and Location Diversity.

Summary: We make the following observations from the results. (i) Among individual features, LFCC-MFCC
performs the best for both our and ASV2017 datasets, which is at least 10% better than MFCC or LFCC alone.
This is consistent with our intuition since they provide finer-granularity over the frequencies in which the live
and replayed voice differ the most. (ii) Combining LFCC-MFCC with phase using the bosaris toolkit [5, 23] gives
the lowest EER. This is as expected since both frequency and phase show distinct patterns between live and
replayed voice. The impact of frequency feature is higher. (iii) ASV2017 has larger EER than our dataset for two
reasons. First, their datasets have a lower sampling rate: 16 KHz in their dataset vs. 44.1 KHz in our dataset, which
corresponds to measuring up to 8 KHz and 22.05 KHz frequencies, respectively. As shown in Section 4.3, the
frequencies above 10 KHz see large difference between live versus replayed voice, the lower sampling rate used in
ASV2017 significantly limits the detection accuracy. Second, their datasets have much more testing configurations
and speakers (24 speakers and 110 replay configurations) than those in the training (10 speakers and 3 replay
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Fig. 10. Breathing Experimental Setup.

configurations) [3]. Overall, our evaluation sheds light on which features are effective for voice-based detection
and why. (v) Our detection algorithm is robust to background noise level and environments. In both cases, the
EER remains within 5%. 1 second audio is sufficient for replay detection. (vi) Our system generalizes well with
different variations like room, device, noise level, when the training data lacks diversity.

5 WIFI BASED PRESENCE DETECTION

In the next stage, we detect the presence of breathing using WiFi CSI. This is an important vital sign which
ascertains the user presence and avoids remote replay. This part is built on the existing works [49, 75, 89]. We
introduce a few modifications to the signal processing pipeline and apply them to more reliably detect user
presence. Below we provide the detail of our breathing based presence detection model, our measurement setup,
and the evaluation results.

5.1 Breathing Rate Detection Using CSI

CSI Setup: We use the Intel WiFi 5300 (iwl5300) card to collect the Channel State Information (CSI). We use the
modified driver and firmware from [19] that reports the channel-state matrices for 30 sub-carrier groups in a
20 MHz channel at 5.7GHz (channel 140). Each matrix specifies the amplitude and phase of the WiFi channel
between a pair of transmit and receive antennas. We modify the logging utility of [19] to process the CSI data in
real-time. We use [71] to sanitize the phase. Our customized C code computes and normalizes the CSI matrices.
These matrices are then sent to a python program that uses SciPy library [28] to perform band pass filtering
of the amplitude and phase of these CSI values. We then perform FFT on these filtered data and use peakutils
library [27] to detect peaks in the FFT spectrum to get breathing events and rates.

Approach: [49, 75, 89] demonstrate the feasibility of using WiFi CSI amplitude to monitor the breathing rate.
Built on these works, we first extract the CSI amplitude and phase. We use band-pass filtering (from 0.5Hz to
1.5Hz) to remove noise in the CSI data. We also remove the DC component by subtracting the average. Then we
compute the variance of each sub-carrier group CSI, and select the sub-carrier groups whose variance exceeds
90%. We use the time series from the selected sub-carrier groups to form a matrix, and perform PCA on the matrix
to select the first principle component. We compute FFT on the principle component and select the peak. We use
the peak every 30 seconds to form a BPM (Breathes per minute) time-series, and perform outlier removal on the
BPM time-series. Different from the existing works, we use both CSI phase and amplitude to detect breathing
and estimate BPM. Fig. 14 shows using the phase along with the amplitude improves the BPM estimation by
around 10% . While the exact BPM is not required for user presence detection, it is useful for detecting breathing
rate change during speech in Sec. 6.2.

Experimental Setup: We use a 3.20GHz Intel(R) Pentium 4 CPU 2GB RAM desktop equipped with Intel 5300 NIC
(Network Interface Controller) as the transmitter and use the interface injection mode [19]. The transmitter has a
Tupavco TP542 directional antenna [37] with 13 dBi and 40 degree VPOL and operates in IEEE 802.11n AP mode
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Fig. 11. Prototype of REVOLT.

at 5.7GHz on channel 140. The desktop runs Ubuntu 12.04 LTS with modified Intel driver and firmware [19]. The
setup is shown in Fig. 10(a). During the measurement, the transmitter sends packets at a rate of 100 packets/second.
The collected CSI are then stored and processed at the receiver. We capture the ground-truth of breathing in
parallel using the Neulog Respiration monitor [31] through the USB module [25] as shown in Fig. 10(b). The
ground truth data is only used to quantify the accuracy, and not required in our system.

To improve the detection range, we build a voice activated movable antenna setup shown in Figure 11(a). It
consists of (i) Matrix-IO board [22] to get audio samples, (ii) Intel 5300 card to get WiFI CS], (iii) Raspberry Pi [29]
to detect voice and perform audio processing, (iv) Hummingboard Pro [15] connected with Intel card to perform
CSI processing, (v) directional antennas mounted on the Intel 5300 card, and (vi) arduino, stepper motor, motor
controller, motor driver, and 3D printed mount shown in Fig. 11(b), to move the directional antenna towards
the direction of incoming voice. NTP is used to synchronize all modules. We apply the MUSIC algorithm [53]
implemented in Eigen3 library [10] on Raspberry Pi to determine DoA of the incoming voice, and then move the
tx/rx antennas towards the voice using arduino.

We have recruited the same 10 users (8 male and 2 female) for our breathing detection experiments where
the users stand at different locations. We ask them to speak different voice segments so that our voice-directed
directional antenna can move and pick up breathing pattern based on the CSI trend. We separately evaluate each
of the components in REVOLT. We perform our experiments in three locations: the lab, conference room, and
bedroom. We keep the normal furniture set-up in the respective rooms.

Impact of CSI Phase: Previous works use the CSI amplitude to detect breathing. Fig. 13 shows that there are
peaks in the FFT spectrum of both amplitude and phase. Sometimes phase spectrum has a peak and sometimes
amplitude spectrum has a peak. This occur more often for longer distances. If both of the peaks are present, we
calculate the BPM from each and take the average from them. As shown in Figure 14(a), if we detect breathing
based on peaks in either phase or amplitude spectrum, we improve the breathing detection from 83% to 96%. In
addition, Fig. 14(b) shows that using both CSI phase and amplitude improves BPM error from 1 to 0.82.

5.2 Detecting Presence Using Breathing

Visualizing Breathing Patterns: Fig. 12 shows the time domain and frequency domain of the CSI amplitude
and phase. As we can see, when there is no user, the signals are almost flat and there are no dominant peaks.
When there is a user nearby, we plot CSI amplitude, phase, and ground truth breathing in Fig. 12(c)(e)(g). When
the user is within 2m, we can see periodic changes in the time-domain CSI and dominant peaks in their FFT plots.
The time-domain changes are more prominent at 1 m than at 2 m. As the user moves out of range (e.g., 5 m away),
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Fig. 12. Trace Patterns due to Breathing of a User.

the signals become flat and there are no sharp peaks in the FFT plot. These results show the feasibility of using

WIiFI to detect breathing within 2 m.

Impact of CSI Phase: Previous works use the CSI amplitude to detect breathing. Fig. 13 shows that there
d phase. Sometimes phase spectrum has a peak and sometimes
amplitude spectrum has a peak. This occur more often for longer distances. If both of the peaks are present, we
calculate the BPM from each and take the average from them. As shown in Figure 14(a), if we detect breathing
ctrum, we improve the presence of breathing detection from 83%

to 96%. In addition, Fig. 14(b) shows that using both CSI phase and amplitude improves BPM error from 1 to 0.82.

Accuracy of Detecting User Presence: We use the setup in Fig. 15(a) to evaluate the accuracy of detecting
user presence. As illustrated in Fig. 15(b), we can detect the user presence over 90% in a 2m X 3m area based on

are peaks in the FFT spectrum of amplitude an

based on peaks in either phase or amplitude spe
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Fig. 15. Breathing Experiment Setup.
breathing frequency detection. By steering the transmitter and receiver antennas, we can increase the area to
3m X 3m. To get a wider range of breathing detection, we need to move the directional antennas at both the Tx
and Rx in our setup (Fig. 11(a)). Fig. 16 shows that moving Rx reduces BPM error from 0.2 to 0.17 at 0.5 m and
from 1.1 to 1 at 1.5m, and moving both Tx and Rx further reduces the BPM error to 0.08 at 0.5m and 0.57 at 1.5m.

To move the directional antenna, we use the MUSIC algorithm [53] to calculate the direction-of-arrival of
voice. As shown in Fig. 17, the DoA median error is 1.1 degree at 1 m and 5 degree at 5 m using a normal
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Fig. 16. Breathing Error due to Tx/Rx movement.

voice level. While we use directional antennas for our breathing detection to extend the range since several
smart speakers [44, 45] have movement capability, other approaches to extend range can also be used such as
beam-forming, increasing antenna gain, and/or using customized hardware.

Impact of Movement on Breathing Detection: To test the robustness of our breathing detection system, we
ask 2 users to have small body movements (e.g., swaying) or large body movements (e.g., walking) at the test
locations while speaking. We find that under large body movement either our breathing detection module fails or
the predicted BPM is wrong over 90% cases. However, as shown in Fig. 18(a), we can detect the large movements
based on the CSI amplitude change (similar to [100]) and discard the traces during that period. In comparison, the
small movement at that locations only increases the breathing detection error by only 5% on average as shown in
Fig. 18(b).

We use the CSI traces under movement combined with static traces to study the feasibility of movement
detection, which can help in correctly selecting the traces for breathing detection. We find out that if we select
absolute CSI amplitude change as 10, we can get up to 95% accuracy of detecting breathing activity.

(a) CSI change in large movement. (b) Breathing in small movement.
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Fig. 18. Impact of Movement.

Impact of Movement on Breathing Detection: To test the robustness of our breathing detection system,
we ask 2 users to have small body movements (e.g., swaying) or large body movements (e.g., walking) at the
test locations while speaking. We find that under large body movement either our breathing detection module
fails or the predicted BPM is wrong over 90% cases. However, as shown in Fig. 18(a), we can detect the large
movements by thresholding the CSI amplitude change (similar to [100]) and discard the traces during that period.
In comparison, the small movement at that locations only increases the breathing detection error by only 5% on
average as shown in Fig. 18(b).
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Fig. 19. Breathes per minute (BPM) Error at Different Positions.

We use the CSI traces under movement along with the static traces to study the feasibility of movement
detection, which can help in correctly selecting the traces for breathing detection. We find out that we achieve
up to 95% accuracy to detect breathing activity if we select the absolute CSI amplitude change as 10. [

6 BREATHING PATTERN DETECTION

In the next stage of REVOLT, we leverage the breathing change during speaking to determine if breathing comes
from a live speaker. To the best of our knowledge, ours is the first that uses the breathing change during speech
for live voice detection. We use WiFi CSI traces to estimate the breathing rate continuously. Combining WiFi
based detection with voice based detection improves the accuracy and range of voice replay detection.

6.1 Breathing Rate Estimation

We use the setup in Fig. 15(a) to evaluate the accuracy of breathing rate estimation. Fig. 19 shows the BPM
error without moving the transmitter or receiver antennas for all points except the left-most and right-most
points in Fig. 15(a). Without steering the transmitter or receiver, we cannot detect breathing for the left-most and
right-most points. After steering the transmitter or receiver antennas towards the person’s voice, we can not only
detect breathing for the left-most and right-most points, but also achieve lower BPM error as shown in Fig. 19.

We make a few observations based on the above experiments. First, the BPM error is low in all cases and can
be utilized to detect if the breathing and voice are synchronized. Second, it is clear that steering both antennas
yields a larger reduction in BPM error than moving only one antenna. Third, the error is lower when the user is
closer to the receiver antenna. This is because when the user is closer to the receiver antenna, it affects more
paths; in comparison, when the user is farther from the receiver antenna (but closer to the transmitter antenna),
some of the signals reflected by the user do not reach the receiver.

6.2 Combining Breathing and Speech Pattern

The previous breathing detection checks for physical human presence to rule out remote replay. In some cases,
an attacker may be physically present when replaying (i.e., local replay). To protect against this kind of replay,
we observe that the user that is replaying but not speaking has different breathing patterns from the user who
is speaking. In particular, when a user is speaking, his breathing rate slows down [7]. As an example, Fig. 20
shows a user’s voice (Fig. 20(b)), and his ground truth breathing based on the breathing monitor (Fig. 20(d)), and
corresponding changes in CSI amplitude (Fig. 20(a)) and phase (Fig. 20(c)). As we can see, there is synchronized

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 100. Publication date: September 2019.



100:18 « Pradhan et al.

change in all of them when the user is actually speaking. In comparison, when the user simply replays without
speaking, his breathing rate and CSI remain stable as in Fig. 12(c).
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Fig. 20. Breathing Pattern Change when Speaking at 1 m.

Approach: Based on the above observation, we develop the following scheme to detect local replay.
e We segment the time based on whether voice is on or off.
e We compute the BPM for each segment using the corresponding CSI traces.

e When transitioning from the silent segment to the speaking segment, we check if the breathing rate decreases
by at least a threshold (). When transitioning from a speaking segment to a silent segment, we also check if
the breathing rate increases by at least the same threshold (§). We determine é based on analysis of around
1000 voice segments and breathing segments from our 8 users. Note that REVOLT can learn this threshold
over time from the user during the device setup.

e We compute the number of times (M) the speech and non-speech segments match with our threshold
conditioning (i.e., the number of correct transitioning segments). Next, we calculate the ratio (%) of this
correct transitioning segments (M) and total number of segments (N). If the calculated ratio is above 85%, we
deem the user is actually speaking. In Table 3, we see different false positive and false negative ratios while
changing the correlation ratios. It shows that too strict or too loose correlation ratio results in lower accuracy.

Evaluation: We have 10 users perform live speaking, remote replay, physical replay three times each at 5 grid
positions (P2, P7, P8, P9, and P14 in Fig. 15(a)). We quantify the detection accuracy as the fraction of times that
we correctly classify the user as live vs. replayed voice. Fig. 21 shows the detection accuracy as we vary the BPM
change threshold §. As we can see, the detection accuracy is highest around 90% when § is around 8.

6.3 WiFi Spectrogram based CNN

Although the previous stage prevents the local replay but fails against a sophisticated user who also controls
breathing while replaying. To prevent this replay attack, we further analyze the breathing patterns. Fig. 22(a)
shows that there is subtle difference in the breathing patterns during actual speaking vs. controlled breathing.
Controlled breathing is more flat than normal breathing pattern during speech. Interestingly, there is also
difference in the breathing pattern across users as illustrated in Fig. 22(b) (User 1 has a decreasing pattern during
speech compared to User 2’s wavy pattern). Furthermore, there is a subtle variation in facial movement in the
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Table 3. Impact of Synchronization Correlation Ratio on the

-

Performance of REVOLT.

50.8
S oe [Ratio |FP (%)|FN (%)
3o.
> 0.60 |8.70 [9.83
20.4
8 0.65 |7.20 [11.57
>
$0.2 0.70 |6.45 [12.58

0.75 |5.35 [13.40

o

4 6 8 10 12 14 16
BPM Threshold 0.80 [3.38 |13.85

085 [1.90 |14.48
090 |1.85 |17.93

Fig. 21. Breathing-Speaking Synchronization.

1 Normal 1 User 1
Qo
a €05
E05 CTNAN TR AN <o TS e
1 I
- g I ] 1 ] ] I 5
&=a ' ! Corftrolled ! | a
1 1 I 1 ! ! ¥
1 1 1 1 <
[ 1 <
I [
Q.
(%]

=1 |
£05 .
< I
0 (e o ==
0 10 20 30 .
Time (s) Time (s)
(a) Live vs Controlled Breathing Pattern. (b) Different users’ Breathing Pattern during Speech.

Fig. 22. Unique Breathing Patterns during Speech and Non-speech Segments.

same utterances from different users [52]; different body sizes also affect the wireless signals [100, 103]. All
these variations affect the wireless CSI traces, which makes it hard to model. Instead, we train a convolution
neural network (CNN) using the phase and amplitude spectrogram of the first component of CSI PCA trace to
automatically differentiate between actual speaking vs. controlled breathing as follow.

CNN Architecture Setup: We adopt a standard CNN architecture comprising of a three consecutive convolution
layers with ReLu activations (of 64 block size) and followed by max-pooling layers connected to a two fully-
connected feed-forward networks and ending with a single unit and a sigmoid activation. We employ 3 X 3
filters in each convolution operation. We use keras and tensorflow to implement this while inputting 200 x 200
spectrogram images of both phase and amplitude. The CSI traces are 30 second long. We use rmsprop optimizer
with crossentropy loss function, 0.5 drop-out, and no regularization for this binary-classifier CNN (live vs. replayed).
We train the CNN after collecting data from 10 users. Each user performs live speaking and controlled replay, and
we use 100 samples from each case. We get multiple phase and amplitude spectrograms from each of the sample
and train our CNN with 2100 spectrograms. While testing, we use a 5-fold cross validation of on the samples 10
users using scikit-learn, keras, and tensorflow. Furthermore, we later create a separate testing set from 2 users to
test the effectiveness of our model.

Results: We apply our CNN to our collected data from 10 users in a 5-fold cross validation. Interestingly, even
using this simple CNN, we achieved the accuracy of 75.85%. This means that this spectrogram based model
can prevent at least two thirds of this sophisticated replay attack. Next, we test our model using the data from
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Table 4. CNN Accuracy Trade-offs with Cost Function Change.

’Cost Function (Recall;Speciﬁcity)‘FP (%)|FN (%)
Type 1 (0.1;0.9) 464 |22.03
Type 2 (0.3;0.7) 7.96 |18.49
Type 3 (0.7,0.3) 17.59 |8.78
Type 4 (0.9:0.1) 21.34 |6.45

the two users that are not present in the training data. The accuracy is between 68.01 and 74.47. Next, we use
a customized loss function, which provides different weights to recall. In this way, we can smoothly trade off
between the false positive vs. the false negative. Table 4 shows the trade-offs. If we provide more weight to
specificity (0.9), we can achieve false positive rate of 4.64 even under this sophisticated replay. As part of the
future work, we plan to conduct more extensive training and evaluation.

7 EVALUATING END-TO-END REVOLT

So far, we have evaluated each component in REVOLT separately to differentiate between live vs. replayed voice.
In this section, we examine how our overall system performs. In this end-to-end evaluation, we have selected two
sets of parameters to support two application requirements: Mission Critical vs. Casual, where the former favors
a low false positive and the latter favors a low false negative.

7.1 Evaluation Results

As mentioned in Section 3, we can associate different commands with different protection levels, which map to
different thresholds used in voice and WiFi based detection. Following [99], the false positive is defined as treating
replayed as live and accepting commands from an attacker, and the false negative is defined as treating live as
replayed and requiring unnecessary additional authentication. It is evident that false positive is more damaging
for security sensitive applications like car starting, house opening etc., whereas false negative is irritating for
low-risk interactions such as querying weather query, playing music, etc.. Therefore, we select parameters in our
voice and WiFi detection schemes according to different application requirements.

In our evaluation, we recruit 10 users (8 male and 2 female) between 25 and 45 year old to test our system.
They interact with REVOLT by speaking a few commands (e.g., Alexa, what is the weather?, Alexa, can you open
the house for me?, Alexa, can you start the car in the garage?) while breathing normally at two different positions
(P2, P7 in Fig. 15(a)). At each position, a user performs 3 runs each for live voice, local replay without controlled
breathing, and sophisticated replay with controlled breathing. Altogether, we have 102X 9 = 180 runs and a total
of 1800 voice segments combined with WiFi traces. To mimic remote replay, we put a Samsung S7 smartphone at
the grid positions to replay the recorded audio without the user (180 runs).

Table 5. Combined Performance of REVOLT (Critical). Table 6. Combined Performance of REVOLT (Casual).
Components ‘FP (%) |FN (%) ’Components ‘FP (%) FN (%)
After Speech based [Voice] 2.96 [2.94 After Speech based [Voice] 296 |2.94
After Breathing Detection [WiFi] 2.25 |4.57 After Breathing Detection [WiFi] 5.38 |3.17
After Breath Synch. [Voice and WiFi] |1.05 |7.63 After Breath Synch. [Voice and WiFi] |7.05 |4.63
After Spectrogram CNN [WiFi] (Final)|0.04 |9.95 After Spectrogram CNN [WiFi] (Final) |6.38 |4.83

Table 5 and Table 6 report the average false positive and false negative rates across users using only voice,
only WiFi, and the combined method. We use the same speech model to detect replay attacks based on the voice

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 100. Publication date: September 2019.



Combating Replay Attacks Against Voice Assistants « 100:21

samples. It has a false positive rate around 2.96%. As we would expect, the voice based detection degrades as the
voice SNR decreases. Most of the error comes from one user who speaks softly. The false negative rate is 2.94% as
it detects a few live voice samples as replay due to background noise.

If the speech module considers voice as live, further tests will be applied. In particular, the next stage detects
breathing using WiFi CSI as shown in Fig. 2. In the Critical setting, breathing detection reduces the overall false
positive rate to 2.25% at the cost of increasing the false negative rate to 4.57% since both stages may incorrectly
flag live voice as replayed. The Casual setting has false positive and false negative rates of 5.38% and 3.17%,
respectively, by choosing a longer band-pass filter from 0.2Hz to 2.0Hz and a smaller peak detection threshold to
pick up smaller breathing activity.

If both stages consider voice as live, REVOLT further analyzes voice and WiFi traces to determine if they are
synchronized. This stage further removes the replayed voices. In the Critical setting, it reduces the overall false
positive rate to 1.05% but increases the overall false negative rate to 7.63% as shown in Table 5. At this stage, most
of the remote and local replay cases are flagged correctly. The error mainly comes from (i) wrongfully detecting
breathing from some low frequency noise component and (ii) failing to pick up the breathing signal, which results
in an increase of false negative of up to 7.63%. In the Casual setting, as we change the synchronization threshold
from 0.85 to 0.70, we can limit the false negative rate below 4.63%. However, in this setting, the false positive
percentage is 7.05% as shown in Table 6.

The final stage, which uses CNN to detect sophisticated replay attack, removes the replay cases further. In
the Critical setting, REVOLT reduces the false positive rate to only 0.04% but increases the false negative rate to
9.95%. However, due to a higher recall weight (0.68) in cost function of CNN, the false negative rate in the Casual
setting reduces to 4.83% but the false positive rate remains around 6.38%.

Table 7. CSI Processing Timing on Hummingboard. Table 8. Audio Feature Extraction Timing on RPI3.
Operation HSize ‘Time (ms)‘ Operation HSize (44.1K)‘Time (s)‘
FFT 500 |0.16 Feature Extraction ||1 sec 0.3
FFT 1000/0.27 Feature Extraction ||5 sec 0.9
FFT 2000/0.55 Feature Extraction |10 sec 1.8
FFT + Peak +Predict [|500 |3.62 Extraction + Predict||1 sec 0.5
FFT + Peak + Predict|/1000{5.29 Extraction + Predict||5 sec 1.1
FFT + Peak + Predict|[2000|8.06 Extraction + Predict|| 10 sec 2.1

7.2 Running Time of REVOLT

We implement our system on the setup shown in Fig. 11(a). Specifically, the audio module runs on Raspberry Pi 3
model B [29], which has a 1GHz single core with 512 MB RAM, and the WiFi module runs on Hummingboard
pro [15], which has 1.2 GHZ quad-core with 1GB RAM. Both audio and WiFi modules are implemented in python
using scipy [28] for FFT and peak detection, librosa [17] for audio feature extraction, sklearn [34] (SVM) packages,
and keras [16] with tensorflow back-end [36]. To accelerate the process of feature extraction and inference, we
use the pre-compiled SVM model from our previous dataset (only 136 KB) and extract the cepstrum based features
for detection. For the CNN based detection at the final stage, we use the pre-built CNN model of 19MB size on
the Hummingboard.

We run each experiment 50 times, and report the average of WiFi and audio processing. As Table 7 shows, the
entire processing of the 30 second CSI data with a rate of 100 samples per second using FFT size of 2000 takes
only around 8.06 ms including the band-pass filtering, BPM rate estimation, and CNN based inference. Table 8
shows that the voice feature extraction and inference take within 2 second for 10 second of audio data. In general,
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feature extraction and inference takes around 20% of the actual audio data duration. Since audio processing
is done in parallel with the recording and does not increase the perceived delay. In addition, the MUSIC DoA
estimation takes 0.3 seconds on average, and motor movement takes 0.5 seconds averaged over 20 runs.

7.3 Impact of Intelligent Audio Attack on REVOLT

We further analyze the cases where the attacker tries to mimic live voice by adding more energy to the high
frequency part of the voice. We evaluate three pre-processing strategies: (i) Adding the average energy of the live
voice in the 10-18 KHz frequency banks, (ii) Adding the average difference between the live vs. replayed voice
from our traces in 10-18 KHz, and (iii) Adding energy drawn from the empirical distribution of the differences
between the live vs. replayed voice in 10-18 KHz. We select 300 replayed voice data from our collected dataset and
pre-process them using the above strategies. (i) does not increase the detection error, while the latter two strategies
increase the detection error from 1.31% to 9.83% and 10.24%, respectively. The accuracy is still acceptable since
there are subtle difference in both lower frequency and phase characteristics of the live vs. replayed voice, which
are harder to re-produce.

8 RELATED WORK

Voice assistants are becoming ubiquitous due to its myriad use-cases [54, 82] through different voice interfaces [83].
The authors in [54, 85] show that people are using up to 30 commands a day with these voice-first gadgets as
these devices are becoming more personal [85], which is a clear departure from just a few years back [55, 77].
However, the inherent open nature of voice has raised privacy and security concerns [61, 65]. To address these
concerns, there are various defense approaches proposed to enhance the security of these devices.

Audio only approaches: Voice-enabled systems are vulnerable to replay attacks [57]. Recent advances in voice
synthesis techniques [9, 13] make it easier to synthesize voice commands. Several machine-learning based
approaches exploit spectral features [60, 67] to differentiate between live and replayed voice. Our work advances
these works by (i) improving the spectral features through zooming into the frequencies where the live and
replayed voice differ the most, (ii) using both frequency and phase to detect replay, and (iii) shedding light upon
systematic combination of features to address time and accuracy trade-off. Furthermore, all these previous works
utilize massive number of features with ensemble or neural network based techniques which are expensive
to run in embedded platforms. Interestingly, the observation regarding high frequency spectral characteristics
difference reported by us matches with [97]; however, they do not jointly exploit the phase structure of the
audio or the wireless modality in replay prediction. Recently, a few works [88, 102] modulate voice commands to
inaudible frequency that can be decoded by microphones. However, these attacks are orthogonal to our approach,
which aims to prevent more prevalent and easier to launch audible channel attack. Moreover, there are a few
works [51, 73, 81, 87] that focus on cepstral feature-based neural network-driven speaker recognition, which do
not explicitly address the replay attack problem. As these works concentrate on finding the inherent patterns in
voice spectrogram of a specific user, they do not guard against voice replay.

Wi-Fi only Approaches: A few works use Wi-Fi CSI changes to authenticate users based on activity and gait
etc. [64, 100]. Their Wi-Fi based user identification is complementary but different from our work since they focus
on movement based detection. [50] uses a customized multi-GHz FMCW software radio, which can detect both
breathing and heart rates. [86] uses USRP platform at 2.4GHz signal to detect breathing rate. Recently, researchers
have used commodity Wi-Fi to measure breathing and heart rate [75], minute walking or activity pattern [96] etc.
We borrow from these works, specifically [75, 86], to detect the breathing rate with some modifications. Our
innovation lies in (i) using both amplitude and phase for breathing detection and applying it to voice liveness
test, and (ii) further utilizing unique breathing pattern during speaking to detect live voice.
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Other Approaches: A few recent works [104, 105] look at the phoneme location or the articulatory gesture for
live voice identification. However, these works require extensive training and work for only a few cm range.
Another work [62] uses correlated accelerometer signature of a wearable for the authentication purpose. However,
the overhead of carrying a device can be significant. Furthermore, a recent work [59] uses magnetometer signature
to prevent loud-speaker based replay attack, but it only works within 6cm. [79] uses WiFi CSI traces to identify if
the mouth movement correlates with voice commands to prevent remote replay attack. However, it works only
within 10cm and does not prevent sophisticated replay attack. A few recent works [58, 106] also leverage breathing
sound to differentiate users, but only for a very short range (e.g., 3cm). Furthermore, researchers have also come
up with non-voice textual command semantics based approaches [56, 72], which uses the textual patterns of
commands to prevent attacks. Complimentary to these works, there is a series of silent speech recognition
techniques [69, 90, 93], either using new equipments or additional information from the voice commands, to
prevent voice information leakage. Our system significantly increases the range to support room-scale detection
and prevent the sophisticated replay attack by intelligently leveraging both voice and WiFi modalities.

9 DISCUSSION

Our performance evaluation demonstrates the effectiveness of REVOLT on detecting voice replay attacks. There
are a few avenues to further improve the robustness and generalization of our system.

First, our system can be generalized to work for homes with multiple users or pets. We can apply the approach
in [50] to detect breathing from each of the users and determine if any user has breathing that is synchronized
with the voice. Second, our current system works up to 2m. To further increase the range, we can use higher gain
antennas or customized hardware (e.g., [95]). Third, we can further diversify the datasets used for training to
generalize the voice and WiFi models. Fourth, we can incorporate other physiological signals like heart rate [75]
or soft biometric like gait [101] into replay detection.

10 CONCLUSION

In this paper, we develop and evaluate a voice replay detection system. Its unique advantages are wearable-free,
privacy preserving, and supporting room-scale detection. It leverages the inherent differences between live vs.
replayed voice and human breathing pattern during speech detected through WiFi. We show that leveraging
both voice and WiFi features can detect different types of replay attacks. Our evaluation shows our system is a
promising step towards securing voice-first devices.
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