
Aggregating Inter-App Traffic to Optimize Cellular
Radio Energy Consumption on Smartphones
Swadhin Pradhan∗, Sourav Kumar Dandapat†, Niloy Ganguly†, Bivas Mitra† and Pradipta De‡,

∗CS Department, The University of Texas at Austin, USA
†CSE Department, Indian Institute of Technology Kharagpur, India

‡CS Department, SUNY Korea

Abstract—Cellular radio interfaces on smartphones consume
a significant amount of battery power, specially with growing
number of network centric applications. With high bandwidth
cellular access links pushing the bottleneck to the network core,
the risk of poor bandwidth utilization of the access link increases,
which leads to energy wastage as the radio interface must stay
active longer. In addition, small sized packet transmissions from
applications wake up the interface frequently, but do not require
the entire bandwidth capacity. In this work, we improve the
radio usage by aggregating packet transmission from multiple
applications. We introduce different time delays while transmit-
ting packets from foreground and background applications such
that user experience is minimally impacted. Through empirical
observations, we determine the impact of different types of
traffic on bandwidth utilization. Naive attempts to improve
bandwidth utilization lead to increase in the number of packets
missing the deadline for dispatch. With these observations, we
propose a technique that balances the bandwidth utilization and
deadline misses. Simulation driven experiments using synthetic
traces and real trace based on application usage on Android
based smartphones show energy gain of around 10% over other
competing techniques.

I. INTRODUCTION

Several network-centric applications that use the cellular
radio interface of smartphones consume high energy [3]. In
order to optimize the energy consumption, various energy
saving techniques are implemented. For instance, in absence
of communication activity, the network card switches to an
intermediate low energy state, (instead of switching to idle
state), to save the ramp up energy. However, presence of
intermittent network request with low bandwidth demands,
such as periodic synchronization with a server, leads to high
number of state switches and thus resulting in significant
amount of energy wastage [9]. In addition, it is expected
that mobile broadband connectivity will continue to improve
allowing higher last mile bandwidth [7]. If applications cannot
fully leverage the high bandwidth access link to the base
station due to round trip delay in the end-to-end path, then
it also leads to under-utilization of the available bandwidth,
leading to wasted energy. The CatNap system by Dogan et
al. batches packets with tiny time gaps among them on the
access router to allow the end device to sleep longer, and also
better utilize the access bandwidth [8]. Decoupling the access
links (connecting end devices to edge servers or base stations)
from bottlenecked backbone links (connecting base stations to

servers), can improve network throughput. Closer inspection of
the network architecture reveals that (a) reducing the frequency
of transitions between the low and high energy state and
(2) full utilization of the available bandwidth, opens up the
potential to prevent energy wastage. This paper proposes to
leverage on this opportunity.

In this paper, we aim to maximize the radio resource utiliza-
tion by aggregating the packets across multiple applications.
Higher packet aggregation requires that requests from different
applications may need to be delayed to synchronize their
transmissions. Each application is assigned a delay budget
per network request within which a packet transmission from
that app must be serviced. In general, background applications
are more delay tolerant than foreground apps due to lack of
user interaction [10]. The key contribution of the paper is
to show that improving bandwidth utilization by coalescing
packet transmission across applications at the cost of delaying
the transmission of packets from selected applications can
lead to significant energy gains. We draw the motivation
based on empirical measurements on different packet traces
that show the inter relationship between bandwidth utilization
and packets missing their deadlines (as a result of delaying
packets). We use the observation to derive a function that
optimizes the bandwidth utilization (energy efficiency) without
adversely affecting the deadline misses (user experience).

Our experimental results show that significant energy gains
can be achieved by efficient utilization of the available
bandwidth in high power mode by batching packets across
foreground and background applications without impacting the
user experience. We use the standard energy model of 3G
network card, as described in [2], to compare the energy gains
among competing scheduling strategies while operating in two
different modes - (a) Fast Dormancy, and (b) Fast Dormancy
with 5 sec tail timer. Simulation experiments using synthetic
traces, as well as, real trace (packet trace collected on Android
based smartphones) show that up to 10% network card energy
can be saved compared to other competing techniques.

The rest of the paper is organized as follows. Section II
presents the prior work. Section III discusses necessary mod-
els and assumptions. Section IV presents the technique for
aggregating packets for transmission. Section V shows the
evaluation of the algorithm based on simulation experiments
using traffic traces generated based on the traffic models, while
in Section VI we use traffic traces from normal usage on a978-1-4244-8953-4/11/$26.00 c© 2015 IEEE

2

smartphone. We conclude in Section VII.

II. RELATED WORK

Energy efficiency techniques for 3G radio primarily ex-
plored two directions - tail time adaptation, and traffic ag-
gregation.

The design of Tail Optimization Protocol (TOP) by Qian et
al. leverages the Fast Dormancy feature and usage pattern to
predict long idle periods when the card can be immediately
switched off, thereby eliminating any tail time wastage [15].
A further generalized approach for predicting network idle
time is proposed by Kim et al. [11]. RadioJockey analyses
program behavior to determine communication spurts to en-
able faster switch off [1]. Further improvement is achieved by
better utilization of cellular bandwidth in Bartendr [16] and
LoadSense [6], where free channel time and gateway server
load is used to trigger transmissions. Cui et al. has proposed
an online scheduling algorithm, called PerES [19], which is
closest to our goals. PerES attempts to conserve energy while
ensuring good transmission experience for users. In this work,
the problem is formulated as an energy delay optimization
problem and solved using Lyapunov optimization framework.
We take the path of empirical observations to design our
solution.

A series of work, starting with Tailender, has observed
that utilizing the low bandwidth channel during tail time for
transmission can significantly save energy. Tailender showed
that by clubbing traffic one can reduce energy by 35% for
email applications, 52% for news feeds and 40% for web
search [3]. Xu et al. focuses on the behavior of email ap-
plications on smartphones, and proposes techniques to reduce
energy cost of email sync by 50% [18]. Backgrounds jobs
on smartphones lead to unnecessary wakeup of 3G radio, and
often these jobs are periodic in nature [13]. Techniques for
batching periodic jobs are proposed in [5]. TailTheft uses the
tail time for pre-fetching and delayed transfers, showing the
benefits on per application behavior [12]. Going beyond single
app scheduling, in this work we show that significant energy
savings can be derived by scheduling packets across apps.
For a multi-tasking smartphone user this is a natural usage
behavior.

Catnap system is proposed as a solution for better utilization
of high speed access link in the context of high speed Wi-Fi,
and slow broadband Cable/DSL [8]. We adopt the network
design principle of CatNap. Although Catnap concludes that
efficacy of their approach is limited to applications with large
packets, we show in this work that even in presence of
small packet sizes, significant energy savings can be gained.
Our work also takes into account the typical multi-tasking
behavior of smartphone users, and considers how to ensure
user satisfaction while minimally disrupting foreground job.

III. MODELS AND ASSUMPTIONS

This section presents the models and assumptions used in
formulating the problem and evaluating the proposed solution.

Fig. 1. Simplified topology illustrating packet transfer over high bandwidth
access link in cellular network. Multiple small packets can be aggregated
during upload, which can reduce the need to switch off the 3G network card.

A. Network Model

We assume a cellular network model, similar to 3G UMTS
or 4G LTE, with high bandwidth access links. Fig. 1 illustrates
the network model. With fast access links, the bottleneck
in the network can shift towards the core cellular network,
and the Internet backbone. As a result, although an upstream
request packet from the smartphone to the Radio Access
Network (RAN) may have low latency, the response packet
corresponding to the request may take long to come back. If
the gap between the request and response packets are longer
than a few seconds, the radio network card will be put to sleep
to save energy wastage on the smartphone. However, a state
transition also incurs a significant energy wastage, if the card
wakes up frequently [14].

The orchestration of packet transmission, as shown in Fig. 1,
prevents a state transition by scheduling other request packets
during the interval between a request-response sequence. For
a single app’s request-response sequence, without card state
transition, the goodput of the access link is the total bytes
exchanged over the request-response completion time. Thus
the goodput is much lower than the throughput of the access
link. However, if packets from other apps are scheduled for
transmission in the gap, then the goodput increases, as illus-
trated in the logical view of transmission. The physical view
of transmission shows the packet exchange at the physical
layer of the card, while the logical view illustrates the idea of
aggregating the packets from different applications.

An alternative way to improve the utilization of the channel
is to delay packets from different applications and synchronize
their transmission. The available bandwidth can be more
effectively utilized instead of waking up the network interface
frequently for sending individual packets which may not utilize
the available bandwidth entirely. In essence, the bandwidth
wastage is minimized by introducing an application specific
delay before a packet is transmitted.

B. Application Model

Mobile applications can be categorized as,

3

Background Services (AB) : These services run as back-
ground processes and generate traffic periodically to Internet
hosts. Such services include news service or software updater.
Data consumption and network request pattern of background
services (AB) generally follow a specific pattern, e.g. CNN
news app pulls news snippets periodically.
Foreground Applications (AF) : These are the applications
with which the user directly interacts with. Some of the pop-
ular examples are streaming application like Youtube, gaming
application like Free Online Games, browser application like
the Dolphin browser. It is required to model the network
traffic generated by these applications, which are often running
as foreground processes on a smartphone. URL visits or
revisits in mobile browser follow varied pattern depending
upon different types of users [17], whereas inter-arrival time
of sending or receiving emails follows a power-law with
α = 1 [4]. These two applications represent more general
category of foreground applications where the distribution of
network requests are either random or follow a well-known
distribution. Such foreground applications are termed as (a)
AF −Random, where the distribution of requests is random
and (b) AF −Normal, where the distribution follows a Power
law.

C. Traffic Model

Traffic model simulates network workload of mobile appli-
cations, and is represented using the following parameters.

Application Sync Timing (Ψ) : This parameter decides the
data sync interval for background services. For background
services, we consider a constant value of Ψ, configured by
a user or system default. Values of 15 mins and 30 mins
are assumed. For foreground process, the sync timing is not
applicable since we assume that user interaction drives the
communication to the servers.

User Interaction Timing (Υ) : This parameter emulates
user interaction pattern with the foreground application. As
[4] suggests that human decision mainly follows the pattern
of high activity for a small duration followed by inactivity
for a longer duration, viz. a power-law distribution, therefore
we emulate foreground application activity by choosing Υ as
a power-law distribution with α = 1. For background service
AB , Υ is constant since there is no user interaction.

However, some interaction like browsing behavior on smart-
phones has been reported recently to follow no specific pattern
[17]. To mimic this behavior, Υ value is selected randomly
within a range. For background services AB , we choose a
constant Υ value.

Data Transmission Size (Λ) : The request packet size
varies across applications [8]. This parameter models the
network request size to reflect application characteristics.
For example, gaming applications are likely to have smaller
request packets than that of streaming applications.

Bandwidth Demand (∆) : The bandwidth demand is
considered different for different application types. For in-
stance streaming has the highest bandwidth demand while

gaming has the lowest. The bandwidth demand for background
applications is considered low.

Slack duration (Φ) : Slack duration captures the maximum
allowable delay before a request packet from an application
must be transmitted to maintain quality of service. Foreground
applications will typically have low Φ value compared to
background applications since the user is directly interacting
with the foreground application.

D. Energy Model

We model the energy consumption of two different operat-
ing modes of 3G interface card - Fast Dormancy (FD) and Fast
Dormancy with 5 second Tail Timer (TT) [15]. A 3G interface
state machine has 3 states - IDLE where the radio is switched
off and no energy is consumed, CELL DCH (or DCH),
which is the high throughput state and the radio consumes
high energy, and CELL FACH (or FACH), which is an
intermediate low power state allowing low bandwidth commu-
nications [2]. In TT mode, the network card transitions into
FACH state and stays there for 5 seconds before transitioning
into IDLE state if a packet is not scheduled for transmission.
In FD mode, the card can transition directly into IDLE state.
Due to difference in state transitions the energy consumptions
are different for the two modes.

The total energy consumption of the 3G network card can
be computed using the formula, Total Energy Consumption =
CR + CM + CD, where CR is the ramp up energy to switch
from idle state to high energy state, CM is the energy con-
sumed to keep the card powered on in the high or low energy
state, CD is the data transmission energy. In Fast Dormancy
(FD) mode, there is no tail energy required, however, if the
packet transmissions are frequent then the ramp up energy cost
is high to switch from IDLE to DCH . CM component is
high in FD mode, while it is half in Tail Timer (TT) mode. But,
if we increase the tail timer, the total energy consumed will
be higher in TT mode due to tail energy wastage. However, in
both modes, the data transmission energy, CD, is proportional
to the data size transmitted.

The values for each parameter is based on values reported
in [3], [14], and are as follows. In FD mode, CR = 3.5 J,
CM = 0.8 J, and CD = 0.25x J. While in TT mode, CR is
negligible if the transition is from FACH to DCH , otherwise
it is 3.5J, CM = 0.62t J, and CD = 0.25x J, where x denotes
the amount of KiloByte transferred and t is tail time duration
spent in FACH .

IV. SCHEDULING PROTOCOL

In this section, we formally define the problem and present
our scheduling protocol. We assume a set of concurrent appli-
cations request network resource intermittently. To maintain
quality of service, the network requests from each application
should be serviced within a fixed time duration, which we
defined earlier as slack duration. The slack duration varies
depending on whether the application is a foreground or a
background process. The scheduler must intelligently schedule
the network requests such that more energy is saved while

4

transmitting packets within the slack duration. Two constraints
cannot be violated: (a) requests from the same application
cannot be triggered simultaneously (b) total bandwidth con-
sumption by all the scheduled requests should be less than the
available channel bandwidth.

Formally, we denote the jth network request from the
application Ai as Pij . The arrival time of a request Pij

is rij and the request is serviced at xij . Each request Pij

has a slack duration, fij , which means that request Pij can
be scheduled latest by rij + fij to prevent missing the
deadline. Service duration of request Pij is denoted by dij
and bandwidth required for the network request is represented
as bij . The communication channel has a finite bandwidth
B which implies that at any time instant total bandwidth
consumption of all the scheduled requests must not exceed
B. All the scheduled requests from same application must be
sequential in nature; that means until a request Pij is served,
Pik (where k > j) can not be scheduled, i.e. xik ≥ xij + dij .

The network is designed using two queues to hold request
packets, wait queue, and run queue. Since a network request
may not be scheduled for transmission immediately on arrival,
such packets are queued in wait queue. Packets ready for
transmission are taken out of wait queue and inserted into
run queue. A request in wait queue is marked for insertion
into run queue when the slack duration is expiring. The
scheduler checks the wait queue at the next scheduling point
for marked requests, dequeues the request and inserts into the
run queue, from where it is selected for transmission. The
scheduler executes every time the run queue changes state
due to insertion/deletion of requests.

A. Scheduling Algorithm

The scheduler uses a formula, F , to decide whether to move
a request from wait queue to the run queue. Defining the
value of F is one of the main research questions. This section
explains the selection of F . In order to define a principled F ,
we have to take into account both optimized energy usage and
reasonable system performance. Hence, our approach towards
designing the scheduling strategy is to first study empirically
the variations of two key metrics - (i) bandwidth utilization or
wastage, and (ii) deadline miss for packets.

B. Insights from Preliminary Experiments

We use three synthetic traces with different traffic char-
acteristics to observe the behavior of the two metrics. The
three traffic traces are generated as: (a) Type-1: a collection
of network requests from foreground applications but with low
bandwidth demand for each packet, (b) Type-2: a collection
of low bandwidth background traffic coupled with intermittent
(high bandwidth) foreground network requests, (c) Mixed:
combines the characteristics of Type-1 and Type-2 traces.

In the simplest case, we assume that no intelligent schedul-
ing is applied, and a network request is serviced (send to run
queue) as soon as it arrives. Fig. 2 shows the variations of
bandwidth wastage and deadline miss for the three traces.
Note that for Trace-1 since the bandwidth requirement per

Data: Invoke scheduler on run queue state change
if Trigger received then

for each marked requests in wait queue do
if request is compatible with all requests in run
queue then

Compute F ;
if F > 0 then

Move request from wait queue to run
queue;

else
Remove mark;

end
end

end
end
Algorithm: Balanced Scheduling: Defining F using
Eqn. 5 leads to balanced scheduling
.

Fig. 2. The variation of bandwidth wastage and deadline misses when
packets are scheduled as soon as they arrive for three traces with different
characteristics.

packet is low, therefore, the bandwidth wastage is higher, but
fewer deadline miss occur. It is reversed for Trace-2, while it
lies in between for the Mixed trace. The key observation is
that there are two competing factors bandwidth wastage and
deadline miss which should be accommodated while defining
F . More formally, we can combine them additively to reach a
balance between the two factors. Therefore F can be defined
as follows.

F = β ·Bandwidth wastage+ (1 − β) ·Experience user
(1)

where β is a normalizing constant.

C. Bandwidth Wastage
Let the maximum available bandwidth be B and let there

be n requests denoted by Pi, i = 1 · · · n, each starting at xi
time, running for a duration of di and requiring a bandwidth
bi

1. Then Bandwidth Wastage (BW) is the total available
bandwidth during the active period of at least one of the
requests minus the bandwidth utilized by these requests. It

1without loss of generality we are dropping the j subscript for ease of
understanding

5

can be defined as,

BW = B×T−
n∑

i=1

bi×di, T =Max(xi+di)−Min(xj), ∀(i, j)...

(2)
Assume a packet transmission is delayed using the available slack

duration, which allows the scheduler to aggregate multiple packets
together for transmission. If delaying makes better utilization of
bandwidth compared to sending it as soon as it arrives, then the term
BW1−BW2 gives the bandwidth utilization efficiency, where BW1

and BW2 denotes bandwidth wastage by delaying and not delaying
packets respectively. By normalizing the term, we get the term,

Bandwidth wastage =
BW1 −BW2

Max(BW1, BW2)
(3)

D. User Experience

Three factors need to be considered while optimizing user expe-
rience - (a) a deadline (rij + fij) should not be missed and (b)
process the request not too late but (c) delay the request if it helps
in aggregating a number of application requests together. Let us say
the request Pij appears at time instant rij and has slack duration fij .
Let us also assume that all the network requests presently in the run
queue will be served completely by E (finish time). We assume that
if E is very close to rij , it is prudent to delay the request and wait
for other requests to appear for better parallelization - the probability
of which decreases as the value of E - rij increases. Consequently
we formalize through the following formula,

Experience user =
E − rij+(rij+fij)

2

Max(E,
rij+(rij+fij)

2
)

(4)

E. Normalization factor (β)

In the next set of empirical measurements, we carefully looked at
the impact of each term in Eqn. 1 in determining the value of F such
that we can select a value for the normalization parameter, β. The
value of the normalization parameter, β, should be such that across
all traces the impact of each term is roughly the same. With that
aim we check the average number of times each term contributes in
making the value of F positive. Since at β = 0.9, the contributions
of the two terms are roughly equal, therefore, β value is set to 0.9.

F. Balanced Scheduling Protocol

Finally, for different traffic characteristics, one may need to give
priority to either bandwidth utilization or deadline miss. This is
incorporated by introducing a scaling parameter, α, to skew the
importance of the two terms, as follows.

F = α·β·Bandwidth wastage+(1−α)·(1−β)·Experience user
(5)

where α varies between 0 and 1.
The α value should be ideally chosen such that the bandwidth

wastage and deadline can be optimally traded off. As shown in Fig. 3,
the optimal point where the bandwidth wastage and deadline misses
are optimally balanced occurs under different α values.

V. SYNTHETIC TRACE BASED EVALUATION

In this section, we compare the performance of Balanced Schedul-
ing technique against similar methods for improving energy efficiency
of 3G radio interface using model based synthetic traces.

Fig. 3. The graph shows that for different traffic types the optimal trade off
between bandwidth wastage and deadline miss occurs at different points.

A. Experimental Setup
The simulation experiments are driven by traffic workloads gener-

ated using the models defined in Section III. We model network traffic
in three scenarios, where the foreground application is a gaming
(Quizup), streaming (YouTube) or a browsing application. In each
scenario there are several background applications, like news feeds
or software updaters, which generate traffic.

TABLE I
FOREGROUND AND BACKGROUND APP PARAMETERS USED IN

SYNTHETIC TRACE GENERATION

App Type Sync
Time (s)

UI Time
(s)

Data
Tx
Size
(KB)

Bandwidth
Demand
(KBps)

Slack
Du-
ration
(s)

Ψ Υ Λ ∆ Φ
AB 900,1800 5,10,15 3,5 [9] 10 5-7
AF -Normal NA Power-

law [4]
3,5 [8] 5,15,40 2

AF -Random NA 2-20 [17] 3-50
[8]

20 2

1) Parameter Values: Choice of parameter values determines
representative workloads. Values of different parameters are as shown
in Table I. The capacity of the access link is set to 50 KBps in DCH
state.

According to [8], three different packet sizes characterize all
network transmissions from smartphone applications. Application-
wise we can map this to gaming (small sized packet transmission),
browsing (medium sized packet transmission) and streaming
(large sized packet transmission), leading to different bandwidth
requirement. We model these applications according to the
application model in Section III-B. Bandwidth demand is set to 5
KBps for gaming app, 15 KBps for browsing app , and 40 KBps
for streaming app. AF − Normal traffic models the gaming and
streaming foreground apps, while AF − Random traffic models
browsing. Gaming and Streaming scenarios comprise of one
foreground app, modeled as AF − Normal traffic and bandwidth
demand from Table I, and three background apps. Browsing scenario
comprises of one foreground app, modeled as AF −Random traffic
with 15 KBps bandwidth requirement, and three background apps.
There are 3 background application adding traffic in all scenarios.
Trace duration is 1 hr.

2) Evaluation Metrics: Performance evaluation tracks two key
metrics - energy saved, and number of packets missing deadlines.
Specific metrics are,

6

Energy Consumption per KB: This metric captures total energy
spent to transmit one KiloByte of data over the network interface.
Energy consumed is calculated using energy model in Section III-D.
Alternately, we also report Energy Saved in comparison to a naive
FIFO packet scheduling.

Deadline Miss: Deadline miss is captured as proportion of
requests which have missed their deadline. It is expressed as,
Total Number of Deadline Miss

Total Number of Requests
∗ 100. This metric reflects the user

experience.
The results related to energy consumption are further dissected

using the following metrics,
Radio On Time: It captures the radio on time as a fraction of total

data transmission duration.
State Switch Rate: The state switch rate counts the number of

times per unit time the radio changes state - from IDLE → DCH ,
and DCH/FACH → IDLE.

3) Competing Scheduling Techniques: We compare the Bal-
anced Scheduling technique against three different techniques -
TailEnder, Tail Optimization Protocol (TOP), and Performance-aware
Energy Scheduler (PerES). We present implementation details of
these techniques.

TailEnder: TailEnder [3] uses threshold based tail time pre-
diction by considering deadlines of packets of an application. In
principle, it delays packets as-long-as-possible without affecting user
experience.

We extend TailEnder [3] to prevent tail energy wastage across
multiple applications, instead of original design aimed at single
application. This naive implementation introduces per application
separate queues which are serviced according to the TailEnder
heuristics using a simple round robin order.

PerES: Performance-aware Energy Scheduler or PerES models
cross application energy-delay tradeoff as an optimization problem
and applies Lyapunov optimization framework. It assumes that the
wireless channel bandwidth is variable.

The implementation depends on choice of several parameters. The
chosen parameter values, based on [19], are as follows. δ value of
SVA is 0.001, application preference weights are 1/10 (for foreground
application) and 1/100 (for background application), θ value is taken
as 10, wireless signal as taken uniform randomly from the range of
−50 dBm to −110 dBm, and application details are according to
Table I.

TOP: Tail Optimization Protocol (TOP) reduces tail energy
wastage by predicting the application behavior [15]. Since this paper
claims that tail time can be predicted with 60% accuracy, therefore,
for 60% of the uniformly randomly chosen application traces, we
assume that TOP is aware of the packets apriori. The remaining
parameters are based on Table I.

B. Experimental Results
1) Choice of α value: The goal of this experiment is to select a

value of α that is suitable for a specific trace. We plot the variation of
three metrics - Energy Saved compared to FIFO packet scheduling,
Deadline Miss, and Bandwidth Wastage - for the three scenarios.
Fig. 4 shows the results for the three cases with varying α values.

Note that with increasing α value energy saved increases since
the bandwidth wastage reduces. But deadline miss increases with
increasing α since importance of deadline miss reduces according to
Eqn. 5. Since the two factors are conflicting, α value can be learned
by collecting statistics on more traces. But in this work, we do not
focus on the optimal selection of α. Instead we show that even a
suitable choice of α can lead to noticeable gains. Based on Fig. 4,
we choose the α value to be 0.3, 0.4 and 0.5 for gaming, streaming
and browsing scenarios respectively. In the following experiment
results, we have used these α values for each setting.

Fig. 4. The impact of variation of α on 3 traces with different characteristics
- gaming, streaming and browsing, are shown.

Fig. 5. Comparing energy usage of competing scheduling strategies in Fast
Dormancy and Tail Timer, with 5 sec tail time, modes. We compare three
scenarios - gaming, streaming and browsing for the chosen α values.

2) Energy Gain: In this experiment, we focus on how much
energy is saved using our proposed balanced scheduling. We com-
pare energy consumption of balanced scheduling against competing
techniques, described in Section V-A3 in both Fast Dormancy (FD)
and Tail Timer (TT) mode of operation. Fig. 5 shows the results for
three different traffic traces.

For gaming and browsing, Balanced scheduling performs similar
to PerES and TOP, but better than TailEnder. These two scenarios
represent interactive foreground applications with relatively smaller
request size, and reduced opportunity for delaying a request. Hence
the gains are marginal compared to the other techniques. Note that
in streaming, as the packets are larger in size, and higher delay
in transmission can be tolerated, there is more opportunity for
aggregation. Therefore, Balanced Scheduling performs much better
than the other techniques.

The energy consumption in TT mode is less than that of the
FD mode. When network traffic is sufficiently high, then in TT
mode the card transitions from FACH to DCH state, thereby
expending less energy compared to a transition from IDLE to
DCH in FD mode. The lower energy spent in each transition,
and often the low number of transitions, as verified with more
experimental results later, leads to better energy savings in TT mode.

3) Deadline Miss: In our technique we introduce an application
specific variable slack duration to each request. Ideally a packet
should be transmitted within this slack such that user experience is
not impacted. In this experiment, our goal is to study the impact
of increasing number of background processes on the number of
packets that miss the deadline. Lower deadline miss implies better

7

Fig. 6. Comparison of percentage of deadline miss for competing scheduling
strategies. For Balanced scheduling we use the chosen α values.

Fig. 7. Comparing the radio ON time for each competing scheduling strategies
while operating in Fast Dormancy and Tail Timer, with 5 sec tail time, modes.
We compare three scenarios - gaming, streaming and browsing for the chosen
α value.

user experience. The results record the deadlines missed by packets
from foreground process since this number directly impacts the user
experience. Fig. 6 shows the results of deadline miss percentage for
all the competing techniques, and for three different scenarios, where
the α values are same as the ones to obtain the energy consumption
results.

There are several observations based on the results. First, Balanced
scheduling performs better than the other schemes in terms of missed
deadlines. PerES and TOP perform better than TailEnder since these
two techniques are designed for cross application scheduling, unlike
TailEnder which have been extended for cross application scenario.
Second, with increasing background process count, deadline miss
increases. The background processes start consuming the bandwidth
although their slack duration is higher than foreground processes.
This leads to more foreground requests missing their deadline.
Third, in Browsing scenario PerES and Balanced scheduling has
similar deadline miss, however, in other two scenarios, Balanced
does better.

4) Insight into Gains: This section looks deeper into the reasons
for the energy gains. There are two key factors - (i) longer the radio
stays on, more energy is consumed, and (ii) increasing the number
of state transitions leads to more energy consumption due to ramp
up energy. These two factors conflict with each other. Hence in the
following experiments, we study the contribution of these two factors
in energy consumption.

Fig. 7 shows the percentage of radio on time in two operating
modes, FD and TT , for three scenarios of gaming, streaming and
browsing, and for all the competing techniques. From the figure we

observe that in FD mode, the radio on time is proportional to the
request size. In gaming scenario, since the request sizes are small,
therefore, DCH mode is less utilized giving lower radio on time.
Radio on time increases for Streaming scenario. Similar argument
holds for the TT mode, but the additional time spent in FACH
mode gets added to the radio on time.

Fig. 8. Comparing the number of times per unit time the radio interface
switches state. We compare the metric for the competing techniques and on
traces from three scenarios - gaming, streaming and browsing, where the α
values for each setting is pre-determined.

Fig. 8 shows the number of times the radio switches state per unit
time. Higher number of switches implies that ramp up energy must be
spent to switch state. According to the energy model (Section III-D),
in FD mode ramp up energy is much higher than that in TT mode,
if the card switches from FACH to DCH state. From the results,
we can observe that FD mode leads to higher number of switches.
Since in FD mode, the state transition is triggered within 2 seconds
of the end of transmission, therefore, more switches occur than in
TT mode. Lower number of transitions in TT mode contributes to
lower energy consumption.

Based on the results from Fig. 7 and Fig. 8, and comparing
the energy consumption results in Fig. 5, we can infer that lower
number of state switches contributes more significantly towards
energy savings than radio on time. Hence TT mode saves more
energy than FD mode, as shown in Fig. 5. The result can be further
explained by observing that in FD mode radio on time is much
lower than TT mode. The higher radio on time in TT mode is due
to additional time spent in FACH state. However, the energy spent
in FACH state is half of that spent in DCH state.

VI. REAL TRACE BASED EVALUATION

This section shows the results of evaluating Balanced Scheduling
on real traces from a rooted Android based Samsung Galaxy S3
GT19300 smartphone. We gather the network traffic trace for 1 hour
duration where the user is using the browser. We collected the packet
trace using tcpdump, and map the ports to process identifiers in
order to differentiate among traffic from each application. Wherever
necessary, we used parameter values as shown in Table I.

Fig. 9 shows the energy usage of Balanced scheduling compared
to the other techniques. Energy used by Balanced Scheduling is
about 10% less than the competing techniques. The performance gain
is lower compared to that of simulation results due to the nature
of the real trace. The network traffic is grouped in nature since a
foreground app spawns multiple background threads which trigger
network requests at the same time. Such grouping limits the scope
of aggregating traffic and reduce state transitions. Fig. 10 shows the
corresponding deadline miss. Balanced Scheduling performs better
than other techniques in this aspect.

8

Tailender Peres Top Balanced
0

0.1

0.2

0.3

0.4

Different Scheduling Algorithm

E
n

e
rg

y
 i
n

 J
/K

B

Fast Dormancy
Tail Time(5 sec)

Fig. 9. Showing energy required to transfer one KB data across different
scheduling algorithms on collected real trace (browsing). α for Balanced
scheduling is chosen as 0.5.

Tailender Peres Top Balanced
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Different Scheduling Algorithm

D
e

a
d

lin
e

 M
is

s
 F

re
q

u
e

n
c
y

Fig. 10. Showing deadline miss frequency across different scheduling
algorithms on collected real trace (browsing). α for Balanced scheduling is
chosen as 0.5.

VII. CONCLUSION

Optimizing energy consumption of cellular radio interface is
important in presence of growing number of network centric appli-
cations on smartphones. In this work, we show that aggregation of
packets across applications leads to better utilization of available
bandwidth during the high power state of the 3G network card. In
order to aggregate packets, we introduce the idea of variable delay
for network requests from foreground and background applications,
which ensures better user experience. Simulation results show that
close to 10% energy can be saved using intelligent scheduling without
adversely affecting user experience. An important take-away from
this work is that reducing number of state transitions of the network
interface can save more energy than optimizing utilization of the tail
period of the card.

VIII. ACKNOWLEDGMENT

This work is partially supported by the grant given by Vodafone
IIT KGP Centre of Excellence in Telecommunications (VICET)
and ITRA (Media Lab Asia). This research is supported by the
MSIP (Ministry of Science, ICT and Future Planning), Korea, under
the ”IT Consilience Creative Program” (NIPA-2013-H0203-13-1001)
supervised by the NIPA (National IT Industry Promotion Agency)

REFERENCES

[1] P. K. Athivarapu, R. Bhagwan, S. Guha, V. Navda, R. Ramjee, D. Arora,
V. N. Padmanabhan, and G. Varghese. Radiojockey: Mining program
execution to optimize cellular radio usage. In MobiCom 2012.

[2] Comparing lte and 3g energy consumption.
https://developer.att.com/developer/forward.jsp?passedItemId=11900006.

[3] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. En-
ergy consumption in mobile phones: A measurement study and impli-
cations for network applications. In IMC 2009.

[4] A.-L. Barabasi. The origin of bursts and heavy tails in human dynamics.
Nature, 435:207, 2005.

[5] M. Calder and M. K. Marina. Batch scheduling of recurrent applications
for energy savings on mobile phones. In SECON. IEEE, 2010.

[6] A. Chakraborty, V. Navda, V. N. Padmanabhan, and R. Ramjee. Coor-
dinating cellular background transfers using loadsense. In Proceedings
of the 19th Annual International Conference on Mobile Computing &
Networking, MobiCom, 2013.

[7] Cisco visual networking index: Global mobile data traffic forecast update
20132018. http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white paper c11-520862.html.

[8] F. R. Dogar, P. Steenkiste, and K. Papagiannaki. Catnap: Exploiting
high bandwidth wireless interfaces to save energy for mobile devices.
In MobiSys 2010.

[9] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin.
A first look at traffic on smartphones. In IMC 2010.

[10] J. Huang, F. Qian, Z. M. Mao, S. Sen, and O. Spatscheck. Screen-
off traffic characterization and optimization in 3g/4g networks. In IMC
2012.

[11] Y. Kim and J. Kim. Personalized diapause: Reducing radio energy
consumption of smartphones by network-context aware dormancy pre-
dictions. In HotPower 2012.

[12] H. Liu, Y. Zhang, and Y. Zhou. Tailtheft: Leveraging the wasted time
for saving energy in cellular communications. In MobiArch 2011.

[13] F. Qian, Z. Wang, Y. Gao, J. Huang, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck. Periodic transfers in mobile applications: Network-wide
origin, impact, and optimization. In Proceedings of the 21st International
Conference on World Wide Web, WWW, 2012.

[14] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.
Characterizing radio resource allocation for 3g networks. In IMC 2010.

[15] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.
Top: Tail optimization protocol for cellular radio resource allocation.
ICNP 2010.

[16] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande,
C. Grunewald, K. Jain, and V. N. Padmanabhan. Bartendr: A practical
approach to energy-aware cellular data scheduling. In Proceedings of the
2010 International Conference on Mobile Computing and Networking,
2010.

[17] C. Tossell, P. Kortum, A. Rahmati, C. Shepard, and L. Zhong. Charac-
terizing web use on smartphones. In SIGCHI 2012.

[18] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang, and Q. Li.
Optimizing background email sync on smartphones. In MobiSys 2013.

[19] C. Yong, S. Xiao, X. Wang, M. Li, H. Wang, and Z. Lai. Performance-
aware energy optimization on mobile devices. In INFOCOM 2014.

