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ABSTRACT
Continuous detection of human activities and presence is essen-
tial for developing a pervasive interactive smart space. Existing
literature lacks robust wireless sensing mechanisms capable of
continuously monitoring multiple users’ activities without prior
knowledge of the environment. Developing such a mechanism
requires simultaneous localization and tracking of multiple sub-
jects. In addition, it requires identifying their activities at various
scales, some being macro-scale activities like walking, squats, etc.,
while others are micro-scale activities like typing or sitting, etc. In
this paper, we develop a holistic system called MARS using a sin-
gle Commercial off-the-shelf (COTS) Millimeter Wave (mmWave)
radar, which employs an intelligent model to sense both macro and
micro activities. In addition, it uses a dynamic spatial time-sharing
approach to sense different subjects simultaneously. A thorough
evaluation of MARS shows that it can infer activities continuously
with an accuracy of > 93% and an average response time of ≈ 2 sec,
with 5 subjects and 19 different activities.
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1 INTRODUCTION
Imagine living in an intuitively interactive space without the need
to understand its grammar. One doesn’t need to interact in a spe-
cific way or use select voice commands [57] or always wear some-
thing [27]. Sharing this intelligent space with others does not also
degrade the individual user experience. Interestingly, this vision of
seamless smart spaces is not novel and quite dated [20]. However,
we are yet to occupy this kind of space regularly. For this vision
to become an everyday reality, we argue that there is a need for
multi-user continuous room-scale activity tracking through passive
sensing. This paper attempts to create an activity-sensing system
that can be used to make indoor living spaces truly intelligent.

However, it is crucial to establish what features make such a
passive activity-sensing system desirable for wide-scale deploy-
ment. Learning from the decades of research in wireless sens-
ing [8, 9, 25, 34, 62], we argue that: 1) monitoring multiple subjects,
2) monitoring different activity over time (for single subject), 3)
multi-activity support including macro-scale (activities involving
significant body movements) and micro-scale (activities involving
minor body movements) activities, 4) real-time inference of ac-
tivities, and 5) continuous subject tracking1 are critical for such

∗The author was affiliated to IIT Kharagpur during this project.
1We use the term continuous tracking to indicate time-shared tracking of multiple
subjects, where the system may intermittently switch from one subject to another, but
the time of switch should be less than the typical activity duration, ensuring every
performed activity by the subjects is tracked.
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Figure 1: Overview ofMARS .

a system to be successful and widely adopted. Notably, existing
works [10, 12, 23, 34, 50, 52] closest to our vision primarily focus
on a subset of the above objectives. For example, [10, 12, 23, 50]
supports single-user activity tracking. [34] can track multiple users
but only considers short-duration actions. On the other hand, [39]
supports a large class of activity recognition; however, for multi-
user tracking, the developers must provide feedback to locate and
track users using a 1 × 1 × 2𝑚3 bounding box for isolation.

We examined different modalities for our envisioned system
to achieve continuous passive wireless sensing, including Wi-Fi,
UWB, acoustic, and mmWave. As our goal is to make the system
self-contained, easy to maintain, and readily deployable, we inten-
tionally ignore the multi-modal approaches [25, 44] due to their
added complexity and modalities where users need to carry or wear
something [35]. Acoustic sensing is compelling because of its cheap
hardware but suffers from range, resolution, and the impact it has
on users [31]. Wi-Fi sensing has also been deployed extensively in
the literature [8, 9, 11, 21, 26]. However, as discussed in [16], Wi-Fi
has limited resolution when simultaneously separating activities
at different scales (macro and micro) due to its narrow bandwidth.
UWB and mmWave are the most compelling technologies that pro-
vide high bandwidth and hence, better resolution for sensing a
wide range of activities [28, 50, 61]. However, UWB overlaps with
the Wi-Fi in the supported frequency range and thus may expe-
rience high interference from Wi-Fi deployments; therefore, we
consider mmWave to realize the above vision. Recent exploration
in the direction of identification [63], position tracking [56], action
recognition [28, 50], vital-signs [19, 60], speech sensing [33, 36],
etc. justifies the practicality of mmWave sensing for daily activity
monitoring. However, we observe that current mmWave sensing
literature does not address continuous human activity monitoring
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over a longer time or space in an indoor environment, thereby
restricting it from being a pervasive practical solution.

Gaps: The majority of previous studies [10, 12, 50, 59] have re-
ported a high level of sensing accuracy as the subject is kept within
the main lobe (−15°< radar lobe angle < 15°) of the radar’s field-of-
view (FoV). In practice, however, the indoor movement of a subject
can be completely random, and thus, activities cannot be detected
when the subject is outside the radar’s FoV. Incorporating multiple
mmWave radars to track multiple users within the same room will
significantly increase the complexity due to the complex interfer-
ence patterns from multi-path signals over the same or overlapping
frequency bands. Furthermore, there are countless activities a user
can engage in, ranging from macro activities involving major body
movements (like cleaning the room) to micro activities involving
lesser body movements (like typing on the phone). Most of the
previous works [10, 50] primarily consider macro activities for a
single user, which are easy to detect due to the rich doppler patterns
in the reflected mmWave signals. Nevertheless, in reality, a subject
can perform both macro and micro activities over time, whereas
different subjects can work on different things simultaneously. Also,
tracking activities from multiple subjects is challenging as house-
hold objects and motion artifacts across subjects can cause noise
from static and dynamic multi-path reflections. In a nutshell, in con-
trast to the existing works, the critical challenges are three-fold that
we aim to address in this paper: 1) handling multiple users, 2) ad-
dressing multiple activities seamlessly, and 3) making it continuous
in real-world settings with COTS mmWave devices.

Motivated by these gaps and empowered by our vision, we first
divide the activity grammar into two subsets – (i) Macro activities
that involve significant body movements (like changing clothes) and
(ii) Micro activities that need minor movements of body parts (like
typing). Next, to track users’ activities seamlessly, we divide the
problem into two parts (Figure 1): (i) localization and tracking in a
way that multiple users’ positions can be tracked in every scenario
with a single mmWave radar and (ii) continuous opportunistic activ-
ity monitoring to distinguish both macro and micro activities. The
primary challenges involved in the multi-user localization with a
single mmWave radar are: (i) scenarios when the subject is present
inside the room but not within the FoV of the mmWave sensor,
(ii) creation of zombie subjects due to multi-path reflections, (iii)
associating subjects based on their Radio Frequency (RF) reflections
in scenarios when the users cross each other, and (iv) blind-spots
during multi-user tracking due to occlusions by other subjects.
Additionally, for continuous activity monitoring across multiple
subjects, detecting both macro and micro-scale activities simulta-
neously with the same mmWave radar configuration is not feasible.
For example, the radar with a high-doppler resolution can capture
better micro movements but adds more noise in capturing macro
activities. In contrast, low-doppler resolution can capture macro
movements but fails to detect micro activities.

Contributions: To mitigate these challenges, in this work, we
propose MARS , a mmWave-based sensing system: Multi-user
Activity tracking via Room-scale Sensing. In summary, we con-
tribute in the following ways:

(1) We build an end-to-end prototype for continuous multi-user ac-
tivity monitoring using a single mmWave FrequencyModulated

Continuous Wave (FMCW) radar using a novel technique that
rotates and scans complete 360° opportunistically. The approach
develops methods for dealing with zombies, static clutters, and
blind spots utilizing a single rotating radar, thereby avoiding the
complex interference patterns that arise from multiple radars.
Further, MARS can track complex multi-user movements (like
two users walking in opposite directions) in less than 5 sec
latency (median latency ≈ 2 sec) by employing intelligent han-
dling of pointcloud clusters captured from a single radar.

(2) MARS employs a novel method of differentiated stacking of the
captured range-doppler frames as well as opportunistic switch-
ing of radar configurations in order to detect macro and micro
activities simultaneously. By doing so, to the best of our knowl-
edge, we design a system that can monitor the highest number
of human activities in the mmWave domain (1.6× nearest base-
line Vid2Doppler [10]). In contrast to the existing works,MARS
can run on an edge device for real-time monitoring of activities
performed by multiple subjects within a room.

(3) We performed a thorough evaluation of MARS at diverse se-
tups and have shown its superiority compared to several other
baselines. In classifying the macro and micro activities, we
can achieve an accuracy of 97% and 93%, respectively, with
an average response time of ≈ 2s. We open-source our imple-
mentation and sample dataset to reproduce our results: https:
//github.com/arghasen10/MARS.git.

2 PRELIMINARIES AND PILOT STUDY
In this section, we empirically illustrate the key foundational un-
derpinnings of MARS through pilot studies.

2.1 Preliminaries
The primary working principle of COTS mmWave radars is cen-
tered on FMCW [42] that transmits continuous frequency chirps
and performs dechirp operation by combining the transmitted sig-
nal (TX) with the signal reflected (RX) from objects to create an
Intermediate Frequency (IF) signal. From this IF signal, we extract (1)
Pointcloud, a discrete set of points representing the detected objects
and (2) Range, the distance of the detected objects from the radar.

2.1.1 Range estimation. The distance information between the
object and the radar can be obtained by measuring the frequency
difference between the reflected and transmitted signals [42]. This
frequency gap, also known as beat frequency (𝑓𝑏 ), arises after a
Round Trip Time (RTT) of, say 𝜏 . If 𝑇𝐶 is the transmit time of
the mmWave chirp across a bandwidth of 𝐵, then the slope of the
FMCW chirp can be given as 𝑆 = 𝐵

𝑇𝐶
=

𝑓𝑏
𝜏 . The RTT delay, 𝜏 , can be

specified as 𝜏 = 2𝑑
𝑐 where𝑑 is the distance of the detected object and 𝑐

is the speed of light. Thus, the detected object’s distance can be given
as, 𝑑 = 𝑐

2 .
𝑇𝐶
𝐵
.𝑓𝑏 . To calculate 𝑓𝑏 , a Fast Fourier Transform (FFT),

called range-FFT, is performed on the IF signal, which produces
frequency peaks at locations where the reflecting object is present.
Locating these frequency peaks in turn estimates the range.

2.1.2 Velocity estimation. To measure the velocity of a moving
target, the radar transmits 𝑁 number of chirps separated by a
transmission time of 𝑇𝐶 . If a subject moves with a speed of 𝑣 , the

https://github.com/arghasen10/MARS.git
https://github.com/arghasen10/MARS.git
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Figure 2: Standard deviation (std) in the range-doppler heatmaps captured during the entire activity duration. (a) Sample setup
for data collection, (b)-(k): Macro activities with low doppler resolution, (l)-(t): Micro activities with high doppler resolution.
Activities having similar body movements have similar patterns, but the difference can be captured in the temporal domain.

phase difference between two successive RX chirps corresponding
to the motion, 𝑣𝑇𝐶 , can be given as, Δ𝜙 =

4𝜋𝑣𝑇𝐶
𝜆

. A second FFT,
called doppler-FFT, is performed on these phasors to determine the
movement or velocity of the object. This information is captured in
a 2D matrix called range-doppler D𝐷×𝑅 where 𝐷 and 𝑅 correspond
to the numbers of doppler bins and range bins, respectively.

2.1.3 Pointcloud estimation. The pointcloud is estimated through
the standard CFAR algorithm [38] that detects peaks of the range-
doppler matrix corresponding to the detected objects. More de-
tails on the pointcloud estimation can be found in [43]. The point-
cloud consists of the coordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ), doppler variation (𝑑𝑖 ),
and the received power (𝑝𝑖 ) of the detected objects. The point-
cloud set (𝑆) for 𝑁 number of detected objects can be given as
𝑆 =

⋃𝑁
𝑖=1{(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑑𝑖 , 𝑝𝑖 )}.

2.2 Pilot Study
We consider 19 different activity classes from Activities of Daily
Living (ADLs), Instrumental Activities of Daily Living (IADLs) [7],
and daily indoor exercises – (i)macro activities like walking, running,
jumping, clapping, lunges, squats, waving, vacuum cleaning, folding
clothes, changing clothes, and (ii)micro activities like laptop-typing,
phone-talking, phone-typing, sitting, playing guitar, eating food,
combing hair, brushing teeth, and drinking water. In contrast to the
existing literature that primarily uses voxelized pointcloud [14, 50,
55] or 1D doppler [10, 12], in this paper, we explore range-doppler
2D heatmaps for activity classification; the primary motive is to
find a parameter that can detect both macro and micro activities
simultaneously from different users. For this purpose, we conducted
a set of pilot experiments to explore to what extent range-doppler
information can be used in capturing human activity signatures
and how the indoor setting impacts such sensing capability.

2.2.1 Feasibility study for range-doppler. Figure 2 shows the stan-
dard deviation in the range-doppler heatmaps captured during
the activity. Notably, standard deviation technique removes static
powers (-3 to 2 doppler bins) in the heatmap; thus, we see a low-
power value in these doppler bins. We observe that each activity
has different signatures captured by the range-doppler heatmap.
Although the plotted standard deviation looks similar for some
activity pairs with similar body movements (like walking/running,

jumping/lunges), there are temporal changes in the heatmaps; for
example, “running” induces a faster change than “walking”. Thus,
combining the observations from range, doppler, and time, we can
get different signatures. Notably, the macro activities have more
robust patterns due to the magnitude of movement involved. Even
though the micro activities have relatively weaker signatures, they
can be distinctively captured with a higher doppler resolution (−64
to +64 doppler bins, in contrast to −8 to +8 doppler bins used for
macro activities).

2.2.2 Impact of static clutters. Static clutters are any object (walls,
furniture, etc.) that are stationary but can reflect themmWave signal
and therefore, generates unwanted signatures in the range-doppler
data. We consider a scenario with two subjects – Subject 1 and
Subject 2, both sitting inside the room, as shown in Figure 3(a). The
room also contains multiple static clutters, such as wooden sheets
and walls. From the corresponding range-doppler heatmap, we
observe multiple peaks at the range bins corresponding to both the
subjects and the static clutters. Indeed, the static clutters produce a
higher magnitude along the zero doppler axis, thereby signifying
zero or no movement. On the other hand, the dynamic movements
of the subjects are positioned across non-zero doppler bins. A major
takeaway from the range-doppler heatmap is that static clutters are
easily identifiable by their zero-doppler signatures.

2.2.3 The effect of Non Line of Sight (NLoS) movements. To study
the NLoS reflections, we first ask a single subject (Subject 1) to stand
close to a wall and make some movements (macro-scale) as shown
in Figure 3(b). From the corresponding range-doppler heatmap,
it can be observed that the subject’s movements are captured at
two different instances at two different range bins. Of the two
visible peaks, the more substantial peak belongs to the actual user’s
movement, whereas the other instance, also termed as a zombie
subject, occurs due to the multi-path reflection from the wall.

2.2.4 Impact of radar configurations on determining users’ activity.
To understand how the radar configuration affects the patterns in
the activity signatures, we ask one subject to switch his activity
from jumping to two micro activities, namely, sitting in a chair and
phone typing, and finally, walking out of the room. The subject
is asked to repeat the pattern twice to collect the corresponding
range-doppler data under low and high doppler resolution. From the
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std in the heatmap across the entire activity time axis Figure 4, it is
evident that low doppler resolution is adequate for capturing macro
activities like walking and jumping. Still, typing and sitting does
not have any significant signatures. On changing the radar config-
uration to high doppler resolution, we observe that micro activities
like typing and sitting have better visibility. However, with this, the
macro activities (walking, jumping) generate noisy data due to the
higher resolution. Therefore, different doppler resolutions is crucial
to capture the signatures corresponding to different activities.

2.2.5 Impact of multiple radars. To have entire room coverage,
we have taken three radars and kept them in a colocated position
with 120°to each other as shown in Figure 5. We observe that incor-
porating multiple radars within the same room leads to complex
interference patterns in the range-doppler heatmaps. The same or
overlapping frequency bands lead to interference in the mmWave
chirps and also cause more multipath effects. As shown in Figure 5,
the range-doppler heatmaps are very noisy and have complex inter-
ference patterns which are not easily separable. This indicates that
using multiple radars for 360°coverage makes the system complex;
therefore, we need some alternate solution.

3 METHODOLOGY
We consider a single mmWave radar to track multiple subjects per-
forming diverse activities over time. MARS relies on the following
assumptions about device constraints and activity grammars:

(1) We consider that human activities can be classified into
macro and micro based on the amount of body movements
involved. Micro activities involve low-velocity movements,
where the user is primarily static and performs the activity
with minor movements in the body parts, like typing on a
phone or laptop, brushing, combing, etc. Macro activities in-
volve more extensive body movements like exercises, folding
or changing clothes, vacuum cleaning, etc.

(2) At a single instance, the subject performs either a macro
or a micro activity, but not both (like typing on the phone
while exercising; the macro activity will suppress the micro
activity); however, they can switch betweenmacro andmicro
activities over time.

(3) Each activity is performed for a minimum duration Δ. The
value of Δ depends on the hardware setup, particularly the
response time of the radar to complete a 360◦ scan of the
entire room. We consider Δ ≥ 5𝑠𝑒𝑐 in our setup based on
the hardware components used to develop the prototype.

(4) The radar needs to be placed at a location such that two
subjects should not occlude each other while performing
some micro-activities (occlusion can be handled for macro-
activities like walking or running, as we discussed in Sub-
section 3.1.5).

(5) For similar types of micro-activities like phone typing and
laptop typing, the surface area of the devices differentiates
the activities; for example, it is assumed that the surface area
of a smartphone keyboard will be much smaller than the
surface area of a laptop keyboard.

To have the end-to-end user localization and activity monitoring
pipeline based on the above assumptions, we divide the problem
into two sub-problems as highlighted in Figure 6: (i) subject detec-
tion followed by the localization and tracking of the subjects, and
(ii) activity classification for individual subjects. Next, we discuss
two modules addressing these sub-problems.

3.1 Localization and Tracking
MARS relies on the pointcloud data to localize subjects and track
their movements. Motivated by the challenges discussed in Subsec-
tion 2.2, we perform the following steps.

3.1.1 Isolate subjects from static clutters. In practice, multiple static
objects can be present within the FoV of the radar. As we are in-
terested in identifying subjects’ movement, the background, cor-
responding to stationary objects, needs to be removed. For this,
we remove the zero-valued doppler bins for segregating the static
objects (clutters). With this step, the mmWave radar can generate a
pointcloud that does not contain static obstacles to isolate the sub-
jects. OnceMARS starts receiving the pointcloud, it tracks subjects
by converting its pointcloud coordinate to a global coordinate.

3.1.2 Global Coordinate Conversion. When the subject is present
within the room but outside the radar’s FoV, localization, and ac-
tivity recognition of the subject is not feasible. As a solution, we
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mount the mmWave radar on top of the rotor axis of a servo motor.
This enhances the FoV of the radar to 360°. However, rotating the
sensor will directly change the reference coordinate system of the
estimated pointclouds. Therefore, instead of keeping the local co-
ordinate system w.r.t. the radar, we use a magnetometer to keep a
global reference coordinate system. The magnetometer provides
the reference azimuthal angle w.r.t. the earth’s magnetic pole. Con-
sider a user at 𝑃 (𝑥,𝑦) in the radar coordinate system. The radar is
oriented by an angle of 𝜃 w.r.t. the magnetometer. So in the global
coordinate system, the angular position of the object is at (𝜃 + 𝜙),
where 𝜙 = tan−1 ( 𝑦𝑥 ). Equation 1 illustrates the transformation of
the radar coordinate system to the global coordinate system.[

𝑥 ′

𝑦′

]
=

[
𝑟 cos(𝜃 + 𝜙)
𝑟 cos(𝜃 + 𝜙)

]
=

[
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

] [
𝑥

𝑦

]
(1)

With the above transformation matrix, the pointclouds are now
referenced w.r.t. the magnetometer and does not suffer from any
coordinate shift due to the rotation of the radar.

3.1.3 Tracking multiple subjects. Based on the pointcloud data,
we have information about all the subjects; however, we also get
noisy pointclouds due to the movements of the subjects. To tackle
this, we take the pointcloud data in a queue format and pass this
information to Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [24] for clustering. Each cluster is associated
with a unique ID to associate subjects with their respective clusters.
Now, to detect the presence of a new subject, MARS compares
the detected pointcloud clusters between two consecutive frames
received from the radar. If the Euclidean distance between the
centroid of a cluster over a new frame and that over the previous
frame is less than 𝜖 , we keep the respective cluster ID the same as
before. In the case of a newly discovered cluster, we assign it a new
cluster ID, indicating a new subject. Note, 𝜖 is a hyperparameter,
and in our setup, we keep it as 10cm, signifying the minimum range
resolution for a subject.

3.1.4 Trackingmovement of individual subjects. After the clustering
step in the pipeline, each cluster corresponds to the pointcloud
information associated with each subject. However, some of these
clusters may correspond to zombie subjects, as discussed earlier.
We observe that pointclouds for zombie clusters have a low reflection
power and thus are generated less frequently when compared to
the pointclouds caused by the actual subject. So, we first apply a
mode function on the pointcloud queue for each cluster to filter
out the pointclouds generated more frequently due to the actual
subject’s presence. The remaining noisy outliers get removed with
this approach. However, due to the uncertain movements of the
subjects, two subjects may impede each other while crossing. This
may lead to blind spots in the pointcloud data.

3.1.5 Handling blind spots during multi-user tracking. To track each
subject seamlessly, we apply a Kalman filter [40] on the pointcloud
queue for each cluster. The Kalman filtering technique uses the
prior knowledge of the state of an object and then predicts and
updates the location and velocity of that object for the next frame.
For precise tracking of individual clusters instead of a static Kalman
gain, we opted for Recursive Kalman Filter (RKF) to estimate the
subjects’ motion states. RKF can recursively generate the error
covariance matrix and Kalman gain at each stage of the update
process. With this step, we can estimate the subjects’ state when
the actual pointcloud data is unavailable due to occlusion by other
subjects’ movement or errors in the former pipeline.

3.1.6 Servo-based tracking. Usually, the azimuthal FoV of the radar
is 120𝑜 which can localize and track subjects. To enhance this FoV,
we rely on servo-based tracking. As soon as we have the final
coordinates of the denoised pointclouds, we check if each subject is
within the main lobe of the radar, i.e., ≤ ±15°. Otherwise, we rotate
the servo towards the subject by an angle of tan−1 ( 𝑦𝑥 ), to generate
high-fidelity pointclouds and range-doppler heatmaps which are
needed for activity classification. We stop the rotation when the
subject is within ±15𝑜 so that the doppler remains unaffected for
the next activity classification task. Gradually with the rotation
process, a new pointcloud queue is generated for subjects that were
earlier outside the FoV.

3.1.7 Handling Multi-user Localization under Mobility. Occasion-
ally, a user may completely exit the radar FoV due to complex
mobility scenarios involving multiple users. For example, when
the radar tracks one user, another user may work in the opposite
direction. To handle such scenarios, the system maintains these
global coordinate clusters generated by the pointcloud queues for
each user, and the servo rotation process is scheduled sequentially
for each subject during the next activity classification task. If a
user completely exits the FoV, whether by moving in the opposite
direction of the current tracking FoV or by leaving the indoor space,
MARS detects such a scenario by observing a reduction in the cur-
rent cluster count by one. In response, we initiate a full 360°rotation
search. This search ensures that we can re-establish the location
information of the lost user in complex scenarios. Additionally, it
checks if the cluster count reduction is due to a user moving out
of the indoor space, and gradually removes the cluster in the next
frame. Thus, we continuously track multiple users by associating
them with their global coordinate clusters, ensuring that we never
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lose sight of them even when the servo rotates to a different FoV
and solve the challenge of multi-user tracking under mobility. As
explained in Section 3.1.4, it’s worth noting that occasionally, a
cluster may form due to noisy pointclouds resulting from multipath
reflections. Eventually, however, such clusters will be eliminated
due to the mode filter applied to each cluster’s pointcloud queue.

3.1.8 Monitoring state change of a subject. Once a subject is tracked,
MARS monitors the possible state changes of that subject by uti-
lizing the pointcloud data. Broadly, it performs a high-level clas-
sification to check whether (i) the subject is walking or running
inside the room or (ii) the subject is static and performing some
macro/micro-activities. For this purpose, we capture the mean, stan-
dard deviation, kurtosis, and skewness in the denoised pointcloud
queue for each cluster for a time window of 1 seconds. These fea-
tures are fed to a Random Forest Classifier to predict the subject’s
activity scale. Based on the prediction, we continue the localization
and tracking if the subject is walking or running. Else, MARS en-
ables the macro or micro activity classifier opportunistically based
on the inference.

3.2 Macro/Micro Activity Monitoring
We keep two different radar configurations to capture the classes
of micro and macro activities. For macro activities, MARS uses a
low doppler resolution of 16 doppler bins (captures major body
movements but eliminates the details that may generate noise),
while for capturingmicro activities, it uses a high doppler resolution
of 128 doppler bins (captures minor body movements with finer
details). Using range-doppler enables us to easily switch the radar
configurations at different resolutions to recognize both macro and
micro activities from different users.

3.2.1 Segregation of individual subject’s activity signatures. As shown
in Figure 2, range-doppler is represented as a heatmap image, where
the abscissa is the range, the ordinate is the doppler speed contain-
ing the power value of subjects’ movement. Each subject’s activ-
ity has its activity signatures in the range-doppler heatmap (See
Figure 2). To classify the activity of individual subjects, we first
segregate these activity signatures based on the range bins. From
the pointcloud data (collected along with the range-doppler), we
check if there is a non-zero doppler value in the range profile where
the subject is present. If a doppler variation exists, we slice out that
Range-doppler heatmap information with padding of ±10 range
bins. Additionally, we define another copy of the Range-doppler
heatmap for each subject, replacing the remainder with the min-
imum heatmap value for the subject. In this way, we address the
challenge of multiple activity tracking, as each subject has its own
activity signatures, and the remaining signatures corresponding to
other subjects are suppressed. This modified range-doppler data is
fed to the classification model.

3.2.2 Differentiated frame stacking for macro/micro activities classi-
fication. These macro or micro activities span over a short period,
affecting range-doppler values temporally. We stack 1 sec range-
doppler data to capture temporal features, thus achieving a two-
dimensional (2D) multichannel array. However, for macro activities,
the doppler resolution is low, resulting in a heatmap of size 16×256,
while for micro activities, the doppler resolution is high, resulting

Table 1: 2D-CNN architecture (M: macro, 𝜇: micro)

CNN Layer
Parameters

Kernel Stride Channel Dropout
M 𝜇 M 𝜇 M 𝜇 M 𝜇

Input Layer - - - - 5 2 - -
Conv1 2 x 5 3 x 2 1 x 2 2 x 1 32 32 - -
Conv2 2 x 3 3 x 3 1 x 2 2 x 2 64 64 - -
Conv3 2 x 3 3 x 3 1 x 2 2 x 2 96 96 - -
Conv4 2 x 3 - 1 x 2 - 96 - - -
G-avg Pool - - - - - - - -
Dropout1 - - - - - - 20% 20%
Dense1 - - - - 32 32 - -
Dropout2 - - - - - - 10% 10%
Softmax - - - - 6 6 - -

in a heatmap of size 128 × 64. This diversity results in different
Frames Per Second (FPS) for the range-doppler computation and
data transfer. For low-resolution doppler, the FPS is 5, while for the
high-resolution doppler, the FPS is 2. Therefore, we stack 5 frames
together in the case of the macro activity classifier, while for the
micro activity classifier, we stack 2 frames together. This enables
us to have the range-doppler for a consistent time period of 1 sec
for both scenarios.

3.2.3 Model Architecture. The 2D range-doppler heatmaps have
different spatial patterns for each activity. So, we employ a 2D Con-
volutional Neural Network architecture (2D-CNN). Convolution 2D
operation considers the dependency of neighboring spatial values
and the temporal relationship of past 𝑡 (𝑡 = FPS) frames. We use
four and three 2D convolutional layers with ‘same’ padding and
Relu activation for the macro and micro activity classifiers. Next, a
global average pooling layer is added to extract the average spatial
activation across the entire feature map. Finally, we add two suc-
cessive dropout and dense layers, where the dropout rate is kept as
20% and 10%, respectively. The last layer outputs a joint probability
distribution over all possible activities with a softmax activation (de-
tail in Table 1). Although the subject’s orientation may not impact
the detection of macro activities, the micro activities need precise
signatures. As we collect the range-doppler at a higher resolution
for micro activity classification, it can sense the movements even
when the signal strength is low. As a result, the proposed 2D-CNN
model can capture micro activities even when the subject is not
directly facing the radar.

3.2.4 Opportunistic Configuration Switching. For each macro and
micro activity, MARS switches the configuration accordingly (as
derived from the step mentioned in Section 3.1.8). Once the activity
classification is performed, it checks whether the subjects are still
in their activity state. If any subject starts walking or running,
the micro and macro classifiers can detect that and switch the
configuration back to capture the pointcloud data to reinitiate the
Localization and Tracking Pipeline. The clustering and denoising
filters get restarted to track the subjects’ movement.

4 IMPLEMENTATION
As shown in Figure 7a, MARS is developed on top of a COTS
millimeter wave radar, IWR1642BOOST [3]. The system is tested in
three different rooms (see Figure 7b, 7c, 7d) – (i) R1, an office cabin
of size 4 × 3 m2, (ii) R2, a classroom of size 8 × 5 m2, and (iii) R3, a
laboratory of size 12 × 6.5 m2. The ground truth activity of each
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Figure 7: (a) MARS hardware setup; and data collection in different rooms: (b) R1, (c) R2, (d) R3.

subject is manually annotated with the help of the video captured
using a USB camera. Overall,MARS consists of: the front-end radar
and the backend processing unit. The radar senses data and gen-
erates 2D pointclouds and range-doppler heatmaps. These data
entries are transferred via a USB cable with a baud rate of 921600
to the backend Raspberry Pi-4 Model B with 1.5GHz Broadcom
BCM2711 64bit CPU and 8 GB RAM. We have used Python 3.9.6,
TensorFlow v2.10.0, and Scikit-learn v1.1.2 for implement-
ing the macro and micro activity classifiers and the opportunistic
Random Forest classifier. The models are trained on an iMac-M1
(with 16 GB primary memory running macOS v12.6 with base-
kernel version: 21.6.0) and then deployed on the Raspberry Pi-4 for
live inference. The training takes 10 minutes for the opportunistic
classifier and 20 & 25 minutes for the case of macro and micro
classifiers, respectively, with a model size of 7.8MB, 460 KB, and
334 KB, respectively, for the three cases.

4.1 Hardware setup
4.1.1 Radar Configuration. The IWR1642BOOST radar is config-
ured to use two transmitter and four receiver antennas with fre-
quencies of 77-81 GHz (bandwidth 4 GHz). For the three different
use cases, i.e., (i) localization and tracking, (ii) macro activity classi-
fication, and (iii) micro activity classification, we have used three
different radar configurations (Table 2). For the localization and
tracking, we set the frame periodicity as 33.33millisecond to have 30
FPS to fill the localization queue fast so that clustering and Kalman
filter-based tracking can be performed with minimal error. This
configuration provides a range resolution of 4.36 cm, with a max-
imum unambiguous range of 9.02 m. It can measure a maximum
radial velocity of 1 m/s, with a doppler resolution of 0.13m/s. The
sensor is set to transmit 32 chirps per frame. We use the same radar
configuration for the macro activity classification, except we reduce
the FPS to 5 to allow the flow of larger range-doppler heatmaps
(matrix of size 16 × 256) via USB. The doppler resolution is kept at
0.01 m/s for the micro-scale activity classification. The size of the
range-doppler heatmap is 128 × 64, supporting 2 FPS frame rate.

4.1.2 Localization and Tracking Setup. To enhance the radar field-
of-view to 360°, we have mounted the radar on top of the rotor
axis of a TowerPro MG995 Servo Motor [2], powered using a
1200mAh Li-ion Rechargeable Battery. This enables the localiza-
tion and tracking of subjects for the entire indoor space. GY-273
Compass Magnetometer Sensor [1] is used to transform the point-
cloud coordinates to a global coordinate system.

Table 2: Radar configuration

Parameters Localization Macro Micro
Start Frequency 77 GHz
End Frequency 81 GHz

Range Resolution (cm) 4.36 12.5
Maximum Range(m) 9.02 6.4

Maximum Radial Velocity (m/s) 1 0.64
Velocity Resolution (m/s) 0.13 0.01

Azimuthal Resolution (Degree) 14.5°
Frames per Second 30 5 2
Chirps Per Frame 32 64

ADC Samples per Chirp 256

4.2 Data Collection Setup
Data collection is carried out for 7 subjects (3 female and 4 male),
with ages ranging from 23 to 35, for a total duration of 44 hours
across 19 different activity classes (details in 2.2) involving both
macro and micro activities. Around 30 hours of the collected dataset
are being used as the training set. In total, we have 1584000 samples
of the pointcloud dataset, 264000macro range-doppler samples, and
105600 micro range-doppler samples. In order to train the system
for activity classification, the training data is mostly collected in a
controlled environment, in which the user is asked to perform cer-
tain activities. However, for testing data, other than controlled data
collection we also have intentionally kept some scenarios where no
subjects are inside the room (around 30 mins of data) and scenarios
where subjects can select any task from the activity set and perform
in an uncontrolled fashion. Thus we have experimented over differ-
ent controlled, semi-controlled, and in-the-wild setups, as we also
explained later for individual evaluations. To generate the ground
truth for localization and tracking pipeline of MARS , we manually
marked the positions of users’ movement in the room’s floor map.
We asked the users to move in the marked path. We have evaluated
the MAE in the marked coordinates and the denoised pointcloud co-
ordinates. Further, we have usedmmWave-Demo-Visualizer [4] tool,
and implemented a patch to extract raw data, containing pointcloud
and range-doppler heatmap under different radar configurations.
Annotating the video footage captured via another USB camera
installed in the room was done with the help of two volunteers.

4.3 Baselines and Performance Metric
We compare MARS activity classifier with three different base-
lines, (i) Pointcloud-based: RadHAR [50], which is based on
voxelized 3D pointclouds for classifying six macro activities. For
developing the baseline, we have collected the 3D pointclouds
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using a TI IWR1443ISK [6], and we train the classifier (as pro-
vided in [50]). (ii) Range-Doppler: Vid2Doppler [10], which used
range-doppler data to classify 12 different activities. With our col-
lected datasets, we transfer-learn the model weights using the open-
sourced Vid2Doppler classifier model. (iii) VGG-16 network [49]
which is pre-trained on the ImageNet [22] dataset, we apply trans-
fer learning to learn new model weights w.r.t. our collected range-
doppler matrix. This transfer learning approach helps in reducing
the feature extraction part, as all the trained convolutional layers
in VGG-16 are used as feature extractors and do not require retrain-
ing. The base VGG-16 model has been enhanced with 2D-Global
Average Pooling and successive Dropout and Dense layers as done
in the 2D-CNN Architecture (see § 3.2.3). (iv) Pointcloud-based:
Pantomime [39] a combined PointNet++ [41] and LSTM based
feature extractor for classifying mid-air gestures. The models are
trained with a train-test split of 70%-30% and a validation split of
20% from the training set. In evaluating MARS against the base-
lines, we relied on the accuracy metric, which calculates the total
number of correct predictions over the total number of predictions
made. Additionally, we considered response time, measuring the
time taken to infer the activity class.

5 EVALUATION
This section provides the detailed performance analysis of MARS
in comparison with the existing baselines.

5.1 Overall Performance
We consider three scenarios to evaluate the overall performance
of MARS in comparison to the baselines – (i) single subject, mul-
tiple activities over time (Temporal activity diversity), (ii) multiple
subjects, individual subject performs a single activity over time but
different subjects may perform different activities (Spatial activity
diversity), (iii) multiple subjects, each performing different activities
over time (Spatio-temporal activity diversity). We performed these
experiments in a room 𝑅2; later, we discuss the impact of the room
size with a leave one out train-test method.

5.1.1 Impact of different activities over time. Here, we asked the
subjects to choose four activities (two macro and two micro) in a
logical sequence and perform each for at least 10 sec within a room.
For example, a subject may first do some exercise through jumping
(macro), then sit (micro), then take their phone and type a message
(micro), and finally walk to leave the room (macro). As shown in
Figure 8(a), MARS takes the least response time in inferring the
activities with the highest accuracy in comparison to the baselines.
We observe that the response time for the first activity takes ≈ 2 sec,
which involves the bootstrap time to denoise and cluster the data
for localizing the subject. When a configuration switch is necessary
(macro to micro or vice versa), the average response time is ≈ 3.14
seconds. Without a configuration switch, the average response
time is ≈ 1.08 seconds. In comparison, the baselines perform worst
in the response time due to more extended frame stacking (2 sec
and 3 sec, respectively, for RadHAR and Vid2Doppler) and longer
classifier inference time (≈ 4 sec for VGG-16 and Pantomime).
Longer response times of the baselines directly impact lowering the
number of hits in the activity time window, as shown in Figure 8(a)
w.r.t. MARS , which has a low response time due to smaller frame

stacking (1 sec) and reduced inference time (≈ 0.08 sec) with a
light-weight model architecture.

5.1.2 Impact of multi-user activities. In the second scenario, we
pick four subjects and ask three of them to choose one activity from
the set of macro activities and the remaining one to choose one
from the set of micro activities. After determining the subjects’ lo-
cation and states,MARS configures the low doppler resolution and
classifies the macro activities simultaneously, with a response time
of ≈ 3s at the beginning. However, using 1 sec of frame-stacked
data, it can gradually infer the three macro activities simultaneously
with a response time of 1.04s. For the subject performing the micro
activity, it switches the configuration to high doppler resolution
and classifies the same with a response time of 2.08 sec, resulting in
an average response time of 1.9 sec with an accuracy of 98% in the
entire activity time window of 10 sec (see Figure 8(b)). RadHAR and
Vid2Doppler show poor performance as they are built focused on
macro activities only and are trained only for single-user activity
classification. Pantomime, on the other hand, uses separate point-
clouds (within 1×1×2m3, as defined in [39, Sec 6.4]) for the activity
classification task. These pointclouds easily overlap with each other,
especially in scenarios where three subjects are performing macro
activities, and thus show lower accuracy. Interestingly, we observe
that the average number of correct inference forMARS is higher in
this case (spatial diversity) compared to the previous one (temporal
diversity), as the radar needs less configuration switching.

5.1.3 Impact of different activity over time for multi-user. In the
final scenario, we ask four subjects to simultaneously perform four
different activities of their choice (with at least one micro activity
and one macro activity) in sequence within a room, where they
switch the activity approximately every 10 seconds. As shown in
Figure 8(c), the average response time of MARS in this scenario is
≈ 2 sec with 94% average accuracy, in a time window of 10s. Thus,
the overall performance of MARS demonstrates its potential to be
adopted as a real-time system for multi-subject scenarios.

5.2 Performance of Opportunistic Classifier
With the dataset collected across different scenarios, under the lo-
calization configuration (as mentioned in Table 2), we first perform
a train-test split of 70% : 30%. The Opportunistic Classifier (as dis-
cussed in Sec. 3.1.8) is trained with the 70% training dataset with
a validation split of 20% from the training set. According to our
observations, the pointcloud dataset can accurately classify macro
and micro activity sets with 90%, and 99% accuracy, respectively.
However, a slight overlap exists (of 10%) between the macro activity
class and the walking or running class, as under both the scenarios,
there exists a significant variation in the pointcloud data. Interest-
ingly, this variation is similar during the activity initiation period,
and gradually, the variation becomes more separable with time.

5.3 Performance of Activity Classifiers
We next evaluate the performance of the macro and the micro activ-
ity classifiers w.r.t. the baseline in terms of the accuracy. As shown
in Figure 8(d), the accuracy for MARS is 97% in the case of macro
activities and 93% in the case of micro activities. The lower accuracy
for RadHAR is primarily because it relies on the pointcloud dataset
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Figure 8: Accuracy and average response time while predicting (a) different activities over time (single-user), (b) multi-user, (c)
different activities over time for multi-user, (d) overall accuracy ofMARS .
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Figure 9: Accuracy across different activities.

for the voxel formation and generates sparse pointclouds in case of
micro activities. Lower accuracy for Pantomime is due to its sparse
pointclouds, which can easily overlap with other subjects, and its ra-
dial velocity resolution of 0.87 m/s (see [39, Sec 5.1]) which is almost
9× our velocity resolution for macro configuration (0.13m/s). For
Vid2Doppler, the poor accuracy is primarily because it takes only
32 doppler bins, which are unsuitable for micro activity monitoring,
and the model feature extraction part is pre-trained on macro activ-
ity datasets. As the body movements in the case of macro activities
are significant, thus the classifier can segregate individual classes
with an excellent accuracy (close to ≈ 0.97). In the case of the micro
activities, the body movements are less significant, but with the
proposed classification pipeline with a higher doppler resolution,
we can achieve an accuracy of 0.93. Among the micro activities,
laptop typing, eating food, and playing guitar involve higher body
movements, and thus for these particular activities, we observe
higher accuracy (see Figure 9). Activities such as sitting, typing,
and talking on a phone are carried out while subjects sit on a chair.
Thus, the doppler shift for these activities is very low. When the
subject talks on a phone, the overlap with the sitting class is more
significant (≈ 10%). In Figure 9, we show activity wise accuracy
of MARS w.r.t. the baselines. Although MARS supports higher
number of activities compared to the baselines (19 inMARS versus
5 and 12, respectively for [50] and [10]), the classification accuracy
of the baselines significantly drops in comparison to MARS .

5.4 Results: Micro Benchmarks
5.4.1 Impact of number of subjects. In Figure 10(a), we show the
variation in the accuracy for both the macro and micro activity

(a) (b) (c)

Micro-benchmark evaluation.

(d)

Setup for different occlusions

Figure 10: Impact on (a) # of subjects, (b) different rooms (M:
macro, 𝜇: micro), (c) different blockages and (d) Scenarios
with blockages: glass, plywood, and fiber respectively.

Table 3: Accuracy under different number of subjects

# of subjects 1 2 3 4 5
MARS 0.99 0.97 0.95 0.91 0.89

RadHAR 0.88 0.84 0.82 0.77 0.7
Vid2Doppler 0.78 0.76 0.61 0.55 0.2

VGG-16 0.69 0.7 0.66 0.51 0.52
Pantomime 0.87 0.83 0.78 0.76 0.72

Table 4: Accuracy under different occlusions

Occlusions MARS RadHAR Vid2Doppler VGG-16 Pantomime
Wooden Board 0.86 0.77 0.68 0.69 0.78

Fibre 0.92 0.81 0.71 0.73 0.83
Glass 0.89 0.75 0.69 0.71 0.81

classifiers with the different number of subjects present inside the
room.With an increase in the number of subjects up to 5, we observe
a direct impact on the accuracy for both macro and micro classifiers,
but by only ≈ 10%. We compared MARS with the baselines and
have reported in Table 3.

5.4.2 Impact of room structure. We studied MARS extensively in
the three rooms R1, R2, R3 as discussed in Sec. 4. We consider two
cases – (i) Inter-room Training, where we trainMARS over the data
collected at R2 and test over R1 and R3, and (ii) Intra-room Training,
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(a) Macro classifier (w.r.t. orientation)
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Figure 11: Accuracy at different orientations and distances.

where we train and test the models using the data collected over
the same room. As shown in the Figure 10(b), the accuracy for
all the rooms is > 90% for both the classifiers. Interestingly, for
R1, the multipath-reflection effect is more significant due to the
smaller room size, so the accuracy is lower; however, the impact of
intra-room and inter-room is not very significant as MARS learns
the features related to the doppler patterns of the subject’s activity
rather than room-specific features. Inter-room training and testing
(leave one out) also indicate that the model does not overfit.

5.4.3 Impact of blockages. We have tested MARS with different
blockages which acts as a source of occlusion for the mmWave
signal, such as (i) Wooden board, (ii) Fibreboard, (iii) Glass board,
etc (shown in Figure 10(d). However, mmWave at higher frequency
shows higher penetration loss, although it can penetrate materials
like plywood, glass, and fiber. Thus for macro activities, at least,
we can achieve an accuracy > 90% (see Figure 10(c)). However, the
accuracy for micro activities is lower, as small phase variations are
attenuated more quickly than macro phase variations. We have
compared MARS with the baselines and have reported in Table 4.

5.4.4 Impact of subject orientation. We test MARS under different
body orientations of the subject, i.e., (i) front, (ii) left, (iii) right, (iv)
back, w.r.t. the setup. As observed in Figure 11(a) under different
orientations, the macro activity classifier can recognize the activity
classes with an accuracy of ≈ 0.97. But in the case of the micro
activity classifier (shown in Figure 11(b)), the accuracy is lower, es-
pecially for the case of phone talking. During talking on phone, the
subject’s body orientation, such as back or right (while holding the
phone in left hand) significantly impacts the activity classification
due to the occlusion of small-scale body movements. Nevertheless,
it is comforting to see that for other micro-activities, the accuracy
is always > 0.80, even when the subject is at a complete opposite
orientation from the radar.

5.4.5 Impact of distance. Figure 11(c) shows the variation in the
accuracy for the macro activity classifier under different distances
from the subject. The classification is reported for up to a distance
of 5m. The accuracy is ≈ 0.97 as observed. However, Figure 11(d)
indicates that the accuracy for micro activity classifier sometime
drops (up to 10%) with the increase in the distance. Due to signal at-
tenuation, the doppler shift for micro activities sometimes becomes
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Figure 12: Accuracy for (a) Leave one subject out cross valida-
tion; (b) forMacro (M) activities undermicro (𝜇) configuration
and 𝜇 activity under Macro configuration.

undetectable with increasing distance. Interestingly, macro activi-
ties demonstrate improved performance at greater distances (>3m,
as depicted in Figure 11c). This advantage arises from the radar’s
conical field of view (FoV) adeptly capturing the expansive body
movements associated with macro activities at extended distances.
This phenomenon is unique to macro activities, since increasing
distance substantially decreases accuracy for micro activities.

5.4.6 Impact of Leave-one-subject-out. We evaluated MARS on
leave one subject out cross validation scenarios. As shown in Fig-
ure 12a, the accuracy for macro activities is > 90%, and that of
micro activities is > 88%, which validates the robustness of MARS .
This ensures the model is not overfitting the dataset.

5.4.7 Cross Configuration Evaluation. We evaluated MARS when
subjects are performing macro activities while the sensor is in mi-
cro configuration and vice versa. The motivation behind doing so
is empirically validating the importance of radar reconfiguration
on activity classification. As shown in Figure 12b, the classification
accuracy drops significantly to 66% for MARS . The reason behind
such a poor classification for all the methods is twofold: (i) Un-
der micro configuration, the doppler changes are noisier and thus
confused with other macro activities, and (ii) under macro configu-
ration, small changes due to micro activities cannot get captured
properly. Macro activities under micro doppler resolution show
higher accuracy as higher doppler resolution can classify disjoint
activity classes such as changing clothes and jumping easily but
due to rapid changes in the doppler resolution it gets overlapping
classification on similar activities like jumping, lunges, squats, etc.
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Figure 13: (a) Subjects’ angular position from the radar, (b)
accuracy under different articulation angle.

5.4.8 Impact of Articulation angle. We conducted a thorough eval-
uation ofMARS across a range of articulation angles, varying from
−45◦ to +45◦ in 15◦ increments. Subjects were instructed to perform
various activities within these angular regions, and the experiments
were conducted in two distinct sessions: Session 1: We utilized
MARS , which can dynamically rotate until the subject is within
the FoV before predicting the activity. Session 2: Data was col-
lected using a fixed radar setup, similar to the approach detailed
in [39, Sec 6.5] for evaluating the baselines. The results, illustrated
in Figure 13b, demonstrate the superior accuracy of MARS com-
pared to the baseline methods. Notably, the baseline accuracies were
highest within the ±15◦ range, aligning with the FoV. However,
accuracy gradually decreased with increasing angle, as the radar’s
sensing capabilities became limited in capturing the full range of
the participant’s arm movements. Even at 0◦, the lower accuracy
of Pantomime and RadHAR can be attributed to the inherent noise
and potential corruption of pointcloud data during micro activities.

5.5 Localization and Tracking Performance
Figure 14(a) shows a snapshot of the subject tracking pipeline to
the ground truth distance. In this selected experiment, we observe
that the raw pointcloud data for the subject cluster contains the
signature of a zombie subject arising due to multi-path reflections
(present at a distance of ≈ 5m). With the proposed localization
approach, this zombie subject’s pointcloud gets suppressed. In Fig-
ure 14(b), we show the mean absolute error (MAE) in subject local-
ization in three different rooms R1, R2, and R3, w.r.t. the ground
truth, under different numbers of subjects present inside the room
who are walking simultaneously within the FoV of the radar at an
average speed of 0.7-1.1 m/s. Although the MAE in the localization
is < 60 cm with three simultaneous subjects, the MAE gradually
increases with increasing the number of subjects walking simultane-
ously. Since R1 is smaller, the MAE is higher because the pointcloud
data is noisier with more multi-path reflections. However, it is com-
forting to see that even with the five users walking randomly at a
normal to moderately high speed, the MAE is within ≈ 1𝑚.

5.6 Response Time for Multi-User Localization
With the current setup, we can detect multi-user activities with a
faster response time compared to the baselines. However, in some
specific corner cases, we have a lag in the response time. Here, we
will discuss these scenarios: (i) Scenario 1: Normally, the subject
localization task takes an average response time of ≈ 2s; however,
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Figure 14: (a) Qualitative analysis of Kalman tracking, (b)
MAE with different numbers of walking subjects.

Table 5: Avg. Response time for multi-user localization when
simultaneous tracking of multiple users is not possible.

Scenario
Avg. Response

time (s)
MAE
(m)

Scenario 1: Users walking in opp. directions 4.2 0.12
Scenario 2: User walks whileMARS classifies activities 3.22 0.31
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Figure 15: Resource consumption ofMARS .

in cases where users move in opposite directions, the servo tracker
is only able to track one user, resulting in the other user entering
a blind zone. However, as soon as the pointcloud queue count
decreases by one, we resume a 360°rotation search. This allows us
to determine the subjects’ locations with an additional response
time due to servo rotation and refilling the pointcloud queue (≈
4.2s shown in Table 5). This, however, does not compromise the
localization accuracy, as the average MAE remains close to ≈ 0.12
m, on per with single user localization MAE. (ii) Scenario 2:When
the radar is focused on monitoring a specific user’s macro/micro
activities, other users in the queue may start moving, causing the
queue to lose track of them. However, once the system returns to
the localization and tracking pipeline, we are once again able to
deduce the subject’s new location with some additional response
time of ≈ 3.22s (including activity inference time of ≈ 0.08s, radar
configuration switching time of ≈ 1.14s and localization response
time of ≈ 2s) with an MAE of 0.31 m (shown in Table 5).

5.7 Resource and Energy Benchmarks
We measure the resource and energy consumption of the back-end
processing unit, i.e., RPi-4, under different scenarios. As observed
in Figure 15(a), 15(b), the CPU and the memory utilization in case
of the localization and the tracking pipeline is low when the subject
is not present inside the room. As the subject enters the room, the
Opportunistic classifier gets initiated. As a result of feature compu-
tation and pipeline initiation, we observe significantly higher CPU
and memory utilization. After that, when the activity classification
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Table 6: Comparison of the state-of-the-art systems

Title Macro
Activities

Micro
Activities

Continuous
Monitoring

Real-time
Inference

Multi-Person
Monitoring

IMU2Doppler [12] ✓ × ✓ × ×
Mobi2Sense [61] ✓ ✓ × ✓ ✓
RF-Action [34] ✓ ✓ × ✓ ✓
RF-Net [23] ✓ × × × ×
RF-Pose [62] ✓ × ✓ × ✓
Vid2Doppler [10] ✓ × ✓ ✓ ×
RadHAR [50] ✓ × ✓ × ×
m-activity [55] ✓ × × × ×
RF-Diary [25] ✓ × ✓ × ×
Jiang et. al. [28] ✓ × × × ×
Cominelli et. al. [21] ✓ × × × ×
MARS ✓ ✓ ✓ ✓ ✓

pipeline gets initiated, we observe that memory utilization increases
significantly due to large-scale feature computation and loading of
the trained model in the memory. Finally, using a Monsoon Power
Monitor [5], we measure the overall energy consumption of the RPi
under the three scenarios – (i) localization and tracking, (ii) macro
activity classification, (iii) micro activity classification. As observed
in Figure 15(c), the energy consumption is comparatively higher in
the case of macro and the micro activity classification because of
the higher CPU and RAM utilization.

6 RELATEDWORK
Some studies have used wearables for active sensing techniques,
mostly to detect human activity [30, 45]. Even though such methods
are useful, they are not seamless and pervasive enough. Our next
discussion explores alternative passive sensing methods, mainly
those based on acoustics and radio frequency.
Acoustic-based: Passive acoustic sensing [32, 53, 54] involves the
creation of audio chirps that are reflected away fromnearby surfaces
and detected by a microphone. In this direction, both macro [13], as
well as micro activities [32], were studied. Acoustic-based sensing
involves several frequencies, including ultra-sounds [28]. Due to
the reliance on audio frequency, acoustic-based approaches are
susceptible to environmental noise, interference, and microphone
orientation. In addition, multiple individuals affect the acoustic
signature in an unpredictable manner [54].
RF-based:Radio-frequency (RF) in the form ofWiFi [23], RFIDs [29],
UWB radars [61] has been studied for capturing human dynamics.
Many have explored WiFi Channel State Information (CSI) [21, 21,
51, 52]; as the phase and amplitude of radio waves are impacted
by the movements of objects in their path [17]. Both macro and
micro-level [11] activities have been studied in this direction. Al-
ternatively, UWB is suitable for penetrating walls and capturing
movements [19]. Regarding WiFi, CSI extraction from signals is
usually a complex process. Other environmental dynamics, such as
door movement, furniture movement, and electromagnetic interfer-
ence, can also affect the signal. More specifically, the environments
with different sizes and layouts have different multipath effects on
the received WiFi signals [15]. Also, WiFi modality suffers from
poor range resolution [18]. Some works [25, 34] rely on FMCW
techniques with specialized hardware aiming for a relatively higher
depth resolution [25]. However, this specialized hardware is usually
expensive compared to COTS hardware [16]. [34] can track multi-
ple users, mainly for short-duration actions like hand-shaking and
falling. Also A COTS FMCW mmWave sensor such as IWR1642 [3]

demonstrates a better range resolution as compared to the special-
ized device used in [25] (∼3.75cm vs. ∼8cm) [25, 42]. Compared to
WiFi CSI, UWB has a higher achievable resolution [16]; however,
it has a well-known spectrum coexistence issue. RFIDs also have
a limited range of around 5 meters. Instead, mmWave-based sen-
sors can detect small movements at a finer level. Due to its shorter
wavelength, mmWave can create stronger reflections even from
smaller objects [28]. The works [12, 37, 48, 50, 55, 58] employing
this modality rely on emitted mmWave signals in the form of chirps
and exploit the received signal reflected by the surroundings to
capture activity signatures. COTSmmWave radars often use FMCW
chirps for this purpose. Features, such as pointclouds [39, 50, 55],
range-doppler [10, 12, 46, 47], etc., have been proven to be effective
in movement detection. Previous works such as Vid2Doppler [10]
and RadHAR [50] focus on single-user macro activity tracking. Mul-
tiTrack [52] and Pantomime [39] provide long-range localization
and multi-user tracking but does not ensure continuous monitoring.

In contrast to previous works, this work uses mmWave sensing
to continuously track activities since it is minimally intrusive on
privacy and captures micro-movements. The single modality is
sufficient for continuous activity monitoring of multiple individuals.
Our approach also detects themost number of activities (bothmacro
and micro simultaneously) in the mmWave domain with a dynamic
environment whenmultiple users are present. Table 6 highlights the
advantages ofMARS compared to the state-of-the-art contributions
in the relevant domain.

7 CONCLUSION
We need simple yet effective ways for humans to interact with our
smart spaces. Existing ideas, however, use techniques that are both
invasive and difficult to integrate. The key insight prompted us
to design and develop MARS , a lightweight yet highly effective
mmWave-based continuous activity monitoring system. Through
experiments, MARS proves its effectiveness of single subject track-
ing with a mean absolute error of just 45cm despite supporting
global coordinates. After that, it demonstrates field-deployable
accuracy of 97% and 93%, respectively, for multiple macro and
micro-scale activities. Based on the results, we are confident that
MARS will seamlessly adapt to human activities in all situations
encountered in real-world scenarios. The existing form of MARS is
incapable of capturing micro activities beyond five meters due to
signal attenuation with an increasing range, which is a fundamen-
tal challenge in mmWave. Instead of limiting our evaluation to
simplistic functional accuracy, we evaluated the performance of
MARS based on different counts, orientations, distances, and even
energy consumption footprints, comparing it to the state-of-the-art
baselines that demonstrate its superiority.
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