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ABSTRACT
Due to public awareness and government regulations, low-
cost air quality monitors are becoming ubiquitous in modern
indoor spaces. These monitors primarily sense air pollutants
to augment the end user’s understanding of her indoors.
Studies have shown that having access to one’s air quality
context reinforces the user’s need to take necessary actions
to improve the air over time. Hence, user’s activities signifi-
cantly influence the indoor air quality. Such correlation can
be exploited to get hold of sensitive indoor activities from the
side channel air quality fluctuations. In this study, we explore
the odds of identifying eight different indoor activities (i.e.,
enter, exit, fan on, fan off, AC on, AC off, gathering, eating)
in a research lab with the help of an in-house low-cost air
quality monitoring platform named DALTON . Our extensive
data collection and analysis over the three months shows
97.7% overall accuracy in our dataset.

1 INTRODUCTION
Air quality Monitors are becoming ubiquitous in modern
indoor spaces due to government regulations and growing
awareness among the general population. In 2023, this mar-
ket was estimated to be US$ 5006 million, which is expected
to expand up to US$ 11672 million within the next decade [9].
A typical air monitoring solution [1–3] provides the end user
with an understanding of their pollution exposure. Such de-
vices send data to cloud servers for storage and to offload
computational overheads of analyzing long-term data rather
than doing it on-device tomaintain a low-power and portable
form factor. Cloud storage and computing enable the devel-
opment of online dashboards and mobile applications to
visualize the overall pollution patterns [4], trigger alerts and
notifications [16], derive countermeasures [17], etc., reinforc-
ing the end user towards improving air quality for healthier
indoors. However, sharing such indoor pollution data with
a third party can be concerning due to the high correlation
between the performed indoor activities and changes in pol-
lution signature [14]. Therefore, the data can be used as a
side channel to eavesdrop on indoor activities and carry out
surveillance without the user’s consent.
In the last decade, several studies have explored activity

monitoring, and the literature can be grouped into two cate-
gories based on the utilized modality: (i) Direct Video and

Figure 1: DALTON Sensing Module.

audio approaches, (ii) Side channel approaches like Wear-
ables, mmWave, RFIDs, etc. Direct video [10] or audio [11]
based approaches are privacy-invasive and usually require
explicit permission from the end user to be operational. More-
over, users prefer to avoid capturing video or audio data in
private spaces. In contrast, RF-based approaches are privacy-
preserving and are largely being used in industrial or ware-
house scenarios to track packages [15], monitor workers,
etc. Several studies also explore mmWave in typical indoors
to identify user activities in smart homes [13] and remote
patient monitoring scenarios [8]. However, due to limited ap-
plications in general consumer spaces, RF-based approaches
have yet to become part of our daily lives. Moreover, smart-
watches are very effective in monitoring our daily activi-
ties [12] due to their wide adoption in recent years. Such
wearables are incapable of continuous monitoring due to
low battery life and users’ discomfort for long-term usage.
In contrast, few studies [6, 7, 14] have explored correla-

tions between indoor activities and air pollutants. For in-
stance, [6] have identified cooking, smoking, and spraying
activities. [14] has identified indoor meetings, walking in the
corridor, cooking, window open, etc. To further explore the
air quality modality in indoor surveillance, in this paper, we
have identified eight activities (i.e., enter, exit, fan on, fan
off, AC on, AC off, gathering, and eating) in an academic
research lab from the data collected over three months pe-
riod. The data is collected with an in-house sensing module
named DALTON as shown in Figure 1. Firstly, we establish
the influence of the activities on the air pollution signature
of the indoor environment. After that, our extensive eval-
uation with simple off-the-shelf machine learning models
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Figure 2: Readings from five colocated DALTON devices indicate the variability across sensors made by the same
vendor. The maximum error between two devices is within the error margin, as reported by the vendor.

shows a maximum of 97.7% overall accuracy in classifying
the considered activities.

2 EXPERIMENTAL SETUP
We have utilized our developed air quality monitoring plat-
form named DALTON to collect pollution data in a research
lab. We have deployed four sensing modules in four corner
desks of the lab. Each DALTON module is lunchbox size (112
mm × 112 mm × 55 mm), equipped with multiple research-
grade sensors that together measure the concentration of
pollutants, such as Particulate matter (PMx), Nitrogen dioxide
(NO2), Ethanol (C2H5OH), Volatile organic compounds (VOCs),
Carbon monoxide (CO), Carbon dioxide (CO2), etc., with Tem-
perature (T) and Relative humidity (RH). The device utilizes
the ESP-WROOM-32 chip as the on-device processing unit
that packs a dual-core Xtensa 32-bit LX6 MCU with WiFi
2.4GHz HT40 capabilities. The connectivity board is a two-
layer printed circuit board (FR4 material). The outer shell of
the module is a 3D printed (PLA+ material) hollow structure
with honeycomb holes so that the air within the module is
the same as outside, resulting in unbiased measurement of
pollutants (at a sampling frequency of 1Hz).
Although the sensors are factory-calibrated, we have ex-

plicitly calibrated each sensor to ensure the correctness of the
measurements. We have calibrated the PM2.5, Temperature,
and Relative Humidity sensors using a reference Airthings
device [2]. For the CO2 readings, we have calibrated the
MH-Z16 sensor to Zero point (400 ppm) and SPAN point
(2000 ppm) as an initial step before the deployment. Further,
we have turned on the self-calibration mode of the sensor
so that it can judge the zero point intelligently and do the
calibration automatically every 24 hours. The other measure-
ments, such as NO2, C2H5OH, VOC, and CO are one-point
calibrated before deployment and periodically cross-checked
with a calibrated DALTON device during the data collection
period. Figure 2 shows measurements from five colocated
DALTON devices, validating acceptable variability across
sensors made by the same vendor.

3 PILOT STUDY
In this section, we have conducted several pilot experiments
to analyze the influence of indoor activities over the measure-
ments of the air quality monitoring device. The observations
are as follows:

3.1 Indoor Gatherings
To measure the impact of large indoor gatherings in in-
door spaces, we collected data from a classroom during
mid-semester exams at the university. Before conducting
the experiments, we surveyed several classrooms and iden-
tified an ideal one equipped with split AC, and all the win-
dows are therefore closed. The exam was scheduled for two
hours, from 9:00 am to 11:00 am in the morning. In the early
morning hours before the exam, we ensured that the CO2
concentration was at the expected level (close to 400 ppm) to
understand the pollution footprint of 40 students gathering
in the classroom.

As the students started arriving at the venue at 8:45 am, the
CO2 accumulated as the windows were closed for effective
air-conditioning. Notably, the split ACs circulate the airflow
within the room, rather than pulling air from outside, to en-
sure effective air-conditioning with minimal energy cost [5].
However, this made the pollutants accumulate, which the
students could not sense; instead, they felt comfortable with
the cool breeze of the airflow. The pollutants reached peak
levels (almost 5000 ppm) at the last 10 minutes of the exam.
Further, we observe from the floating figure in Figure 3a that
the pollutants remain trapped in that space for a long time
even after all the students leave the classroom. Therefore,
pollutants due to consecutive indoor gathering can add up
and result in long-term accumulation of CO in indoors.

3.2 Air Conditioning
The air monitors are mostly equipped with temperature and
humidity sensors. Air conditioning systems directly impact
the temperature. Therefore, when theAC is turned onAC, the
temperature goes down and vice versa. Similar observations
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Figure 3: Air monitor’s measurements due to different activities - (a) Accumulation of CO2 when students enter
the classroom and drop upon exit during an exam, (b) Temperature change with AC on/off, (c) Eating food.
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Figure 4: Variation of CO2 concentration with indoor
activities throughout the day.

can be seen in Figure 3b, where the temperature goes down
from 26◦ C to 23 ◦ C. The temperature starts rising as soon
as the air conditioning is off.

3.3 Eating Food
Figure 3c shows the sudden increase in volatile organic com-
pounds (VOC) concentration due to eating fruits near a DAL-
TON module. We can observe elevated levels of VOC for
the duration of eating activity (10 minutes). The pollutant
starts normalizing as soon as the activity ends and the table
is cleaned. During the pilot experiments, we observed that
food scraps can act as a long-term pollution source until they
are removed from the indoor space.

3.4 Occupancy Patterns
An overall daily pattern in CO2 variation for the collected
data from the research lab is shown in Figure 4. We observe
that indoor activities and occupancy influence the overall
CO2 levels. As shown in the figure, CO2 concentration keeps
rising when the lab is occupied, and during the dinner, lunch,
and break hours, it falls slightly due to less occupancy. The
lab members usually come to the lab at around 10 am in
the morning. The CO2 starts accumulating till 2:00 pm in
the noon when the members go to lunch. However, the CO2

remains at a similar concentration due to less ventilation.
The pollutant increases during the afternoon and evening
hours due to maximum occupancy before the evening break.
Again, during the night hours, the CO2 accumulates until the
dinner break. In summary, indoor pollutants such as CO2 are
significantly influenced by indoor activities and occupancy
patterns.

Fan off (9.16%)
Eating (0.82%)

Exits (39.32%)

Ac on (1.18%)

Enters (37.42%)

Gather (1.1%)
Fan on (8.36%)

Ac off (2.64%)

Figure 5: Class Distribution in the collected Dataset.

4 DATASET & FEATURE ENGINEERING
We have deployed the DALTON air quality monitors over
three months in four corner desks of the lab. In total, seven
volunteers annotated their activities in the lab throughout
the entire data collection process. For example, the annota-
tions are collected when someone exits or enters the lab, the
fan is turned on or off, the AC is turned on or off, people
gather for discussion, and someone eats food in the lab. Fig-
ure 5 shows the class distribution of the collected dataset. We
can observe that most annotations comprise people entering
or exiting the lab, followed by the fan on or off activity. How-
ever, AC on-and-off events are relatively less frequent. Lastly,
indoor gathering and eating in the lab is very infrequent.

4.1 Features
We compute several statistical features over a sliding window
of duration 𝜏 to capture each pollutant’s abrupt changes and
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Figure 6: Testing confusion matrix - (a) SVC with polynomial kernel, (b) Decision Tree with max depth 30, (c)
Random Forest with max estimators 50 and depth 10, (d) Neural Network with three 64 neuron hidden layer.

long and short-term accumulation. The features calculated
for each pollutant are as follows:
(i) Maximum and Minimum (max, min): These reflect
the highest and lowest levels of pollutants recorded indoors.
High maximum values could indicate very poor air quality.
Very low minimum values suggest good ventilation.
(ii) Standard Deviation (std): This measures how much
the pollutant levels fluctuate. A high standard deviation in-
dicates large swings in pollutant levels due to inconsistent
ventilation or sporadic pollutant sources (like gathering).
(iii) Rate of Change (roc): This measures how quickly pol-
lutant levels rise or fall. Rapid increases might occur if there’s
a sudden release of pollutants (e.g., eating food), while rapid
decreases might indicate effective ventilation. We consider
the rate of change of pollutants for both raising (𝑟𝑜𝑐𝑟𝑎𝑖𝑠𝑒 )
and falling (𝑟𝑜𝑐 𝑓 𝑎𝑙𝑙 ) edges.
(iv) Peak Count (peakc): This is the number of times pollu-
tant levels exceed a certain unsafe threshold. Multiple peaks
could indicate recurring sources of pollutant-generating ac-
tivities or inconsistent ventilation.
(v) Peak Duration (peak∆): This measures the total time
that pollutant levels were above a certain unsafe threshold.
Longer spikes in pollutant concentration could mean a long-
duration activity or may point to issues with ventilation or
persistent pollutant sources.
(vi) Long Stay (∆exc): This represents the duration of mod-
erate pollution levels above the safe threshold. Extended
periods of moderate pollution indicate poor air quality for
prolonged periods. It also suggests inadequate ventilation or
persistent sources of pollutants.

F =
⋃
𝑑∈D

{𝑓 (𝑝) : ∀𝑓 , 𝑝 ∈ 𝜓 × 𝜋} (1)

Let the set of sensing modules D = {𝑑𝑖 |𝑖 = 1, 2, . . . 𝑁 },
where 𝑁 is the number of modules, and the set of pollutants
𝜋 = {𝐶𝑂2, 𝑉𝑂𝐶 , 𝑃𝑀2.5, 𝑃𝑀10, 𝑇 , 𝐻 }. The set of computed
functions over 𝜏1 minute sliding window of each pollutant
1We took 𝜏 = 10 minutes as per empirical observations.
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Figure 7: AUC-ROC Curves - (a) SVC with polynomial
kernel, (b) Random Forest with max estimators 50 and
depth 10.

𝜓 = {𝑚𝑖𝑛, 𝑚𝑎𝑥 , 𝑠𝑡𝑑 , 𝑟𝑜𝑐𝑟𝑎𝑖𝑠𝑒 , 𝑟𝑜𝑐 𝑓 𝑎𝑙𝑙 , 𝑝𝑒𝑎𝑘𝑐 , 𝑝𝑒𝑎𝑘Δ, Δ𝑒𝑥𝑐 }.
Therefore, the set features, including all deployed devices,
are shown in Equation 1. These features are used to train
simple off-the-shelf ML models in the next section.

5 EVALUATION
In this section, we evaluated our setup with multiple off-the-
shelf machine-learning models. We have kept the models
lightweight, considering the efficiency of the system. Figure 6
shows confusion matrices of four models that performs with
above 80% F1-score during our testing. The SVC shows 87.9%
F1-scorewith polynomial kernel. The best-performingmodel,
random forest, shows 97.7% testing F1-score. The respective
AUC-ROC curves are shown in Figure 7.

From the confusion matrix shown in Figure 6c, we can
observe that the random forest classifier is facing confusion
with class pairs such as ( enter, exit), (exit, fan on). The
primary reason is the lab protocol, which insists themembers
turn on the fans while leaving the lab. Moreover, multiple
members simultaneously enter and exit the lab, leading to
confusion in the machine learning model.
Finally, Table 1 summarizes the detailed evaluation of

70-30 random split and 5-fold cross-validation experiments
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Table 1: Performance of themachine learningmodels in 70-30 random split and 5-fold cross-validation experiments
in the collected dataset.

Model Parameters
70-30 Random Split 5-Fold Cross-validation

Training (Weighted) Testing (Weighted) Accuracy (Mean) Accuracy (Std)
F1-score Precision Recall F1-score Precision Recall Train Test Train Test

SVM
Linear kernel 0.831 0.837 0.833 0.817 0.827 0.821 0.495 0.497 0.0156 0.0176
Polynomial kernel 0.892 0.894 0.892 0.879 0.881 0.879 0.543 0.542 0.0041 0.0075
RBF kernel 0.815 0.836 0.82 0.798 0.82 0.804 0.53 0.53 0.0036 0.01

Naive Bayes Gaussian 0.403 0.727 0.399 0.399 0.717 0.39 0.424 0.419 0.0105 0.0047

Decision Tree

Max depth10 0.949 0.95 0.949 0.924 0.924 0.924 0.967 0.951 0.0025 0.0051
Max depth 20 0.992 0.992 0.992 0.975 0.975 0.976 0.992 0.974 0.0008 0.0039
Max depth 30 0.992 0.992 0.992 0.976 0.976 0.976 0.992 0.975 0.0007 0.0039
Max depth 40 0.992 0.992 0.992 0.976 0.976 0.976 0.992 0.975 0.0007 0.0039

k-Nearest Neighbour

Neighbour 10 0.981 0.981 0.981 0.975 0.975 0.975 0.985 0.979 0.0008 0.0022
Neighbour 20 0.972 0.972 0.972 0.967 0.967 0.967 0.983 0.979 0.0002 0.0024
Neighbour 30 0.959 0.96 0.96 0.956 0.956 0.957 0.979 0.976 0.0015 0.0044
Neighbour 40 0.946 0.946 0.947 0.947 0.947 0.947 0.975 0.972 0.0021 0.0036

Logistic Regression – 0.791 0.801 0.796 0.764 0.777 0.77 0.581 0.577 0.0088 0.0145

Random Forest

Max estimator 30
Max depth 10 0.988 0.988 0.988 0.979 0.979 0.979 0.989 0.977 0.0005 0.0021

Max estimator 50
Max depth 10 0.988 0.988 0.988 0.977 0.977 0.977 0.989 0.979 0.0006 0.0049

Max estimator 100
Max depth 10 0.99 0.99 0.99 0.979 0.979 0.979 0.989 0.977 0.0012 0.0037

Neural Network

Hidden [64, 64] 0.981 0.981 0.981 0.973 0.973 0.973 0.925 0.92 0.0229 0.0165
Hidden [64, 64, 64] 0.982 0.983 0.982 0.978 0.979 0.978 0.947 0.943 0.0104 0.0135
Hidden [128, 128] 0.981 0.982 0.981 0.979 0.979 0.979 0.912 0.91 0.0116 0.0114
Hidden [128, 128, 128] 0.982 0.982 0.982 0.978 0.978 0.978 0.95 0.946 0.0174 0.0203

across seven machine learning models with varying parame-
ters. According to the table, the neural network with three
64-neuron hidden layers performs best in the random split
experiment. However, the random forest shows the highest
accuracy in the 5-fold cross-validation and very similar per-
formance in the random split experiments. Moreover, the
random forest is more computationally efficient and light-
weight. The best parameters for each of themodels are shown
in bold font in the table.

6 CONCLUSION
In this paper, we explored potential side-channel applications
of pollutant measurements from ubiquitous air monitoring
solutions to identify indoor activities. Therefore, sharing pol-
lution data with third parties may cause privacy concerns, as
with such capabilities, one can carry out indoor surveillance
without the end user’s consent. In this work, we have col-
lected pollution data annotated with eight indoor activities
(i.e., enter, exit, fan on, fan off, AC on, AC off, gathering,
eating) in a research lab over three months. Our analysis
highlights that indoor pollutants are greatly influenced by
the activities being performed. We can predict the under-
lying activity from the pollution data with 97.7% F1-score
using a simple light-weight random forest model.
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