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Indoor air pollution is a major issue in developing countries such as India and Bangladesh, exacerbated by factors like traditional
cooking methods, insufficient ventilation, and cramped living conditions, all of which elevate the risk of health issues like lung
infections and cardiovascular diseases. With the World Health Organization associating around 3.2 million annual deaths globally to
household air pollution, the gravity of the problem is clear. Yet, extensive empirical studies exploring these unique patterns and indoor
pollution’s extent are missing. To fill this gap, we carried out a six months long field study involving over 30 households, uncovering
the complexity of indoor air pollution in developing countries, such as the longer lingering time of VOCs in the air or the significant
influence of air circulation on the spatiotemporal distribution of pollutants. We introduced an innovative IoT air quality sensing
platform, the Distributed Air QuaLiTy MONitor (DALTON ), explicitly designed to meet the needs of these nations, considering factors
like cost, sensor type, accuracy, network connectivity, power, and usability. As a result of a multi-device deployment, the platform
identifies pollution hot-spots in low and middle-income households in developing nations. It identifies best practices to minimize daily
indoor pollution exposure. Our extensive qualitative survey estimates an overall system usability score of 2.04, indicating an efficient
system for air quality monitoring.

CCS Concepts: • Human-centered computing → Interaction devices; Interaction design; Empirical studies in ubiquitous
and mobile computing.

Additional Key Words and Phrases: indoor pollution, pollution dynamics, best practices

1 INTRODUCTION

Key Motivation: Indoor air pollution is a significant factor contributing to respiratory and cardiovascular diseases,
taking a toll of approximately 3.2 million lives annually [109]. This alarming statistic highlights an urgent need for
comprehensive global efforts to tackle this often-neglected crisis [111]. It is particularly dire in developing nations such
as India, Chad, Bangladesh, etc., where a variety of factors contribute substantially to the problem [56]. In many of
these countries, traditional cooking practices often involve burning biomass fuels such as wood, agricultural waste, etc.,
releasing harmful pollutants like carbon monoxide, nitrogen dioxide, and various organic compounds into homes [31].
This issue is exacerbated by inadequate ventilation, particularly in densely populated and cramped areas like slums,
where poor airflow allows these pollutants to build up to dangerous levels. The design of indoor spaces, including room
structures and floor plans, further complicates the challenge of managing air quality. Far from being a mere discomfort,
these indoor air pollutants pose serious health risks, penetrating deep into the lungs and causing diseases like chronic
obstructive pulmonary disease (COPD), pneumonia, and lung cancer, and also contributing to cardiovascular diseases
such as heart attacks and strokes [110]. Women and children are particularly vulnerable, spending more time indoors
and thus being more exposed to these hazards [109]. Therefore, we require a comprehensive system that can consider
all aspects of the indoor environment to understand the pollution dynamics and its root causes to actuate preventive
counter-measures in time, promoting a healthier life.

Uniqueness of Developing Nations: Unlike first-world nations, developing nations present a plethora of challenges
to address indoor air pollution. Various factors are detailed in the following. (i) Urbanization and Housing Design: The
challenge of indoor air pollution intensifies in the rapidly urbanizing nations of India and Bangladesh. Here, the
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proliferation of urban slums is marked by poor housing designs that contribute to stagnant air and elevated pollutant
levels. These dense settlements lack proper ventilation infrastructure, leading to a significant accumulation of indoor
pollutants [22, 66]. Furthermore, there are multiple times people in any indoor space in developing countries rapidly
building up carbon dioxide. (ii) Economic Constraints and Energy Sources: In the face of economic limitations, a large
segment of the population in developing countries resorts to using affordable but polluting energy sources. The reliance
on solid fuels like wood, coal, cow dung cakes, and agricultural waste is prevalent for cooking and heating purposes.
These fuels release harmful pollutants when combusted in open fires or traditional stoves. This issue is highlighted
in a report by WHO [109], which estimates that over 2.3 billion people globally depend on these fuels, contributing
significantly to indoor air pollution. (iii) Cultural Practices and Behaviors: Cultural and traditional practices in many
developing countries add another layer to the indoor air pollution problem. Activities such as burning incense and
oil lamps, especially prevalent in religious and cultural rituals, can significantly increase indoor air pollution levels.
These traditional practices, deeply embedded in the cultural fabric, present unique challenges in mitigating indoor air
pollution. (iv) Neighbor-Generated Pollution and Urban Design: The close proximity of buildings in densely populated
urban areas of developing countries leads to pollution from one building, easily affecting neighboring homes. This aspect
of indoor air pollution is often overlooked but is crucial, especially in areas with poor urban planning. For example, in a
congested neighborhood, an open window of Household1 can allow pollutants to enter from the kitchen exhaust of the
adjacent Household2. Subsequently, the pollutants gradually span several rooms of the Household1 according to the
room structure and airflow [28, 87]. (v) Health Implications and Vulnerable Populations: The health impacts of indoor air
pollution are particularly severe for specific demographics, including children, the elderly, and women, who typically
spend more time indoors. The link between indoor air pollution and respiratory diseases in these vulnerable groups is
well-established [110].

Need of Unique System Design: Thus, the indoor pollution monitoring system must be distributed across several
rooms and collaborative to explain the pollution sources. As a result, the identified sources must be reported to the user
in accordance with the severity of the exposure. Depending on the layout of a room and the activities of its occupants,
some pollution sources are more prevalent and result in prolonged accumulation and lingering of pollutants. It is typical
for unwashed utensils in the kitchen sink to emit volatile organic compounds (VOCs) and ethanol overnight, which spread
to the living room and bedrooms, affecting the air quality. The list of actionable pollution sources should be tailored
according to their long-term impact to improve air quality in a sustainable manner. Furthermore, the system must be
easy to deploy and robust enough to recover from power and network failures with no user intervention, providing a
plug-and-play user experience. To enrich the event and activity context of the surroundings, a human-in-the-Loop design
must be employed to engage users in a closed loop low touch dialogue with the underlined air monitoring system,
where the system alerts or proposes counter-measures to prevent oblivious pollution exposure. Lastly, such a platform
must support remote service management to be rolled out in scale so that any fault in the end devices can be handled
and firmware fixes can be applied easily across all devices.

Need of Custom Indoor Air PollutionMonitor and Detailed Study: Realizing a global business opportunity [55],
several enterprises have developed consumer-grade indoor air quality monitors in the last decade. The consumer-grade
low-cost air quality monitors available on e-commerce websites (e.g., Amazon, Alibaba, etc.) such as Pallipartners
Monitor [17], YVELINES Monitor [18], and SmileDrive Portable Monitor [21] etc., do not offer interactivity with the
end-user and only display the real-time pollutant measurements in the in-build screen. The primary design objective of
such devices is ease of use, ignoring the whole human-in-the-loop aspects of such systems. Whereas, commercially
matured products like Prana Air Monitor [5] and Airthings Monitor [8] provide a much better user experience and
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Fig. 1. DALTON platform in Household scenarios. We deployed multiple instances of the platform throughout different household
rooms to capture the origin, spread, and spatiotemporal diversity of the indoor pollutants, providing better actionable insights.

interactiveness (i.e., pollution analytics, push notifications in case of excessive exposure, and moderate hardware
management and maintenance with regular firmware upgrades). These products, however, are isolated single-point
monitors that lack user feedback to provide a deeper understanding of their surroundings. As a result, existing air
monitoring solutions cannot capture pollution dynamics in large-scale deployments. Moreover, several recent studies
have conducted field measurements to understand the distribution of indoor pollutants [28, 31, 47, 68, 80, 87, 104].
However, these works are either very small-scale (<10 measurement sites) or done in a very controlled manner within
the lab setup. Recently developed IoT frameworks [52, 107] have employed real-time data streaming over the wireless
sensor networks to compute pollution overlays [26, 27, 59] for buildings; but, these works are only tuned against
commercial or educational environments. Therefore, comprehensive in-the-wild empirical studies exploring the unique
indoor air pollution patterns, such as spread, lingering, accumulation, ventilation, etc., in the scope of developing
nations are lacking in the literature.

DALTON platform Design: To perform a comprehensive large-scale indoor air pollution study in developing
nations, we designed an end-to-end framework named DALTON (Distributed Air QuaLiTy MONitor, Figure 1) that
can operate in a decentralized manner and provides a better picture of indoor pollution dynamics while employing an
app-based interaction mechanism with the user. We developed an in-house module that is equipped with sensors to
measure particulate matter (PMx), carbon oxides (COx), volatile organic compounds (VOC), ethanol (C2H5OH) along
with temperature (T), and relative humidity (RH). Further, we performed a large-scale study for six months with 30 low
to middle-income households scattered across four different cities, engaging 46 participants, with custom-made air
monitoring devices deployed across all the rooms. We observed that there are several dynamic pollution sources, and
the pollutants spread and linger within the rooms depending on several factors, like the airflow across the rooms, the
indoor-outdoor ventilation, the number of occupants and their activities, etc. Notably, different pollutants like CO, CO2,
VOC (Volatile Organic Compounds), etc., show different spread, contamination, and lingering patterns. Indeed, there
are also seasonal impacts; for instance, the occupants are more sensitive to humidity and temperature; therefore, they
often switch on the exhaust only when they feel uncomfortable. However, there are instances when the temperature
is low, but VOC gets trapped or lingers within the room, which the occupants fail to realize, thus impacting their
health conditions significantly. Our extensive experimentation with the DALTON platform suggests that the system can
identify such harmful pollution events and alert the user to take counter-measures and prevent long-term exposure.
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Contributions: The primary contributions of this paper are listed as follows:

(1) We develop a low-cost air quality monitoring platform named DALTON , specifically designed to operate in scale,
incorporating the indoor events and activity labels from the end user and improving upon observed system-level
challenges from our extensive real-world deployments.

(2) To ensure minimal labeling fatigue, we developed a change-point-based sensor grouping mechanism to associate
air pollution context with indoor events and activities, annotated by the end user via a user-friendly speech-to-text
Android application.

(3) We performed a large-scale study for six months with 30 low to middle-income households in four cities in India
with prototypes of DALTON deployed across all the rooms. We observed that there are several dynamic pollution
sources, and the pollutants spread and linger within the rooms depending on several factors, like the airflow
across the rooms, ventilation, floor plan, the behavior of the occupants and their activities, etc.

(4) An extensive survey on the usability (PSSUQ-score 2.04) of the DALTON platform with 46 participants of the
study ironed out the primary strengths and shortcomings of the current design. It estimated the resiliency of the
platform in real-world scenarios such as network outages, power cuts, fall damage, etc., along with portability,
effectiveness, and user-friendly design of the platform in providing indoor air quality-related actionable insights.

2 LITERATURE SURVEY

In this section, we review existing literature on indoor air quality in developed and developing countries. Our analysis
reveals multiple detailed exploratory studies in developed nations, which can be categorized into air monitoring
platforms, pollution exposure alerts, health effects of indoor activities, and impact of indoor pollutants. In contrast,
developing countries have limited research due to governmental inaction and low awareness. We underscore the
necessity for comprehensive studies in developing countries, considering cultural, socio-economic, and architectural
differences compared to developed nations.

2.1 Studies on Developed Countries

2.1.1 Air Monitoring Platforms. Over the last decade, several studies related to indoor air pollution have been conducted
in developed countries like the USA, China, Korea, United Kingdom etc., that proposed real-time visualization tools
like pollution overlays in educational [26, 27], office building [59, 80], and rural [71] setup and provided a medium to
understand the pollution dynamics over time. Works like [32, 65, 88, 99, 102, 118, 124] have deployed sensors across
buildings to visualize, analyze, and forecast pollution to plan preventive measures. Moreover, authors in [39, 118, 125]
proposed a method to adjust the ventilation rate to the household as a countermeasure triggered by the monitoring
platform. The work [60] incorporates indoor tracking with WiFi footprints to compute personalized pollution exposure
indoors from static air monitors. Whereas in work [74], authors have developed a wearable sensing module that can be
placed on the user’s body to track personalized pollution exposure.

2.1.2 Notifications & Alerts. Indoor comfort also correlates with indoor air quality. For instance, the work [80, 96] found
that temperature and indoor air quality significantly correlate with reported indoor environment quality. In [61, 123],
the authors have developed a mobile sensing module that can be placed at any location of the indoor space to measure
pollutants, where [123] utilized the smartwatch to connect to the monitoring platform and trigger pollution alerts
in terms of vibrations, therefore, sustaining the comfort levels of the indoor space. The work [42, 117] developed a
WiFi-enabled custom monitoring device and performed initial experiments to trigger exposure alerts and control the air
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purifier on a scale as a proof of concept. These works showed that timely alerts about pollution exposure can induce
awareness and proactive measures from the user end to improve the air quality of the indoor space.

2.1.3 Indoor Activities. Several studies [54, 64, 79, 123] considered user interactions and activity annotation to associate
with pollution dynamics. For example, [79] engaged six families to annotate their daily activities with small text messages
while measuring air pollutants from a multi-monitor deployment. Moreover, they also interviewed the participants to
understand their reasoning behind increased pollution levels in their daily activities. For example, one participant in
this study mentioned that using olive oil during cooking produces more pollutants than avocado oil. Studies have also
shown that occupants’ activities and significant events, such as lunch breaks, meetings, etc., influence indoor air quality
significantly. [44] proposed a machine learning-based approach to detect occupant activities like cooking, smoking, and
spraying in small apartments based on sensing the air pollutants. In [106], the authors have inferred limited indoor
activities such as cooking, window opening or closing, corridor walking, etc., from air quality.

2.1.4 Health Impacts. The work [62] has developed a sensing device to estimate the health impact of indoor air quality
on asthmatic patients. The work [114] has forecasted the effects of real-time indoor PM2.5 on Peak Expiratory Flow
Rates (PEFR) of Asthmatic Children in Korea between 8–12 years of age. Moreover, the work [103] observed that several
environmental factors, like smoke, industrial emissions, car emissions, etc, impact our lungs and cause health problems.
In work [113], authors observe that indoor air further causes sensory irritation symptoms in eyes and airways, fatigue,
and headache, reducing work performance (i.e., Indoor Productivity Index) in office environments, hampering sleep
quality. Low humidity and cold temperatures can also cause increased virus survival rates; thus, viruses like Influenza
can live longer and cause infection in occupants’ respiratory tracks [105]. The above building-related illnesses are
referred to as sick building syndrome, which is attributable to various causes like low ventilation, VOCs, and moisture.

2.2 Studies on Developing Countries

Several works from the literature have studied outdoor pollution dynamics in different developing countries [75,
83, 89, 93]. For instance, [86] utilized the government-deployed air monitoring stations in the city to estimate air
quality at several locations with local thermal and humidity signatures, and [91] has hourly forecasted particulate
matter levels in the city. Whereas, [2] analyzed the effectiveness of government-enforced traffic control policy with
the particulate matter measurements at the Delhi-NCR region in India. Several studies [23, 40, 57, 58, 73, 115] have
utilized static and mobile low-cost air monitors to measure fine-grained outdoor air quality and build services like
pollution heat-maps, alerts in case of dangerous pollution levels, etc. Further, [49] has shown that unreliable low-cost air
monitoring devices [33, 34] coupled with air monitoring stations and satellite-based remote sensing potentially estimate
regional scale air quality. Other works [72, 120, 122] have shown that camera images, weather, and course-grained data
from air quality monitoring sites can estimate air quality at personal scales.

2.2.1 Limited Studies on Indoors. In contrast to outdoors, indoors shows significantly different pollution patterns and
mainly depend on indoor activities, room structure, and ventilation, as conveyed by extensive studies in developed
countries. Therefore, the pollution dynamics vary from house to house and at different times of the day, requiring
multiple monitors to measure the changes in pollutants across the household. Due to the lack of involvement of
governmental bodies and less awareness among the general public [3] about the severe health impacts [9, 69, 90] of
bad indoor air, such studies are very limited in developing countries. However, over the last decade, there have been a
few case studies to analyze specific scenarios like the danger of arsenic exposure through inhalation from the burning
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of cow dung cakes [82], particulate matter variation in single-side and cross-ventilated rooms [24], and indoor air
quality measurement for commercial buildings [67]. Very few studies deployed particulate matter [84] and Carbon-
Oxide [53] sensors in low to middle-income households to analyze pollutant spread during cooking. However, these
works obtained limited observations due to the small scale of experiments, less household diversity, and measurement
of only a few pollutants like particulate matter, Carbon oxides, etc. The outcomes of studies in developed countries
are not directly transferable in a developing setting due to different infrastructural, societal, and cultural reasons. The
primary dissimilarities are described in the following.

2.2.2 Dissimilarities from Developed Countries. Due to the way houses are built without considering ventilation [51],
pollutants accumulate frequently and remain in an indoor space for an extended period. The worst-case scenario is
that it gets trapped within a room and remains there until it is ventilated. Due to rapid and unplanned urbanization,
developing countries like India, China, Chad, etc., have densely packed neighbourhoods [35, 85, 95] in residential
areas. Thus, pollution can also spread from one house to another [108]. Moreover, air quality mainly depends on the
underlying activity being performed in the indoor environment. Unlike Developed countries, developing countries
exhibit divergent practices and activities, such as lighting candles and incense sticks due to religious practices that
increase particulate matter and VOC contamination [36, 97]. Moreover, daily cooking is more common in developing
countries whereas, in developed countries, people mostly rely on pre-cooked food or restaurants [78, 112]. Further,
in developing countries, people use raw food ingredients to prepare a meal, whereas people in developed countries
mostly use processed or packaged food items [70] to save preparation time and reduce cleaning efforts. Therefore, the
disposable food residue in developing countries behaves as an additional pollution source [116, 121] for VOC, Ethanol,
and methane if left open in the household. Estimated 70% of households in developing countries use fuels such as wood,
dung, and crop residues for cooking [45]. Studies have shown that emissions like particulate matter, carbon oxides,
VOC, ethanol, etc., from such energy sources hugely impact our health [43, 48, 77]. More importantly, infants, little
children, elderly women [9], and older adults are most affected by indoor pollution in developing countries as they
spend most of their time indoors with several active pollution sources around them.

2.3 Key Takeaways

Considering the above dissimilarities among developing countries and the limitations of the current indoor air quality
studies, here are the key takeaways to further explore unique indoor pollution patterns in developing countries.

• Deployment Scale: As discussed in Section 2.2.1, the measurement studies are small-scale and do not convey a
holistic understanding of indoor pollution dynamics in developing countries. For instance, spread, accumulation,
and lingering patterns in low to middle-income households are yet to be explored.

• Overlooked Pollutants:Most of the studies done in developing/developed countries have analyzed only the
presence of particulate matter and carbon oxides in household air. However, unlike in developed countries, VOCs
and ethanol are more prominent and frequently occurring pollutants in the households of developing countries.
Thus, further studies are required to understand the dynamics of such explicit pollutants.

• Spread of Pollutants: Unlike well-explored outdoors, indoor pollution dynamics are not studied at a personal
scale, especially in developing countries with very complex pollution patterns and heterogeneous pollution
sources. Due to the unplanned housing construction and lack of ventilation, pollutants easily spread across the
household. Multiple sensors must be deployed in a household to measure such spreading patterns. However, the
literature lacks such studies in developing countries.
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• Impact of Activities: As discussed in Section 2.1.3, indoor activities hugely influence the indoor air quality.
Developing countries have very different types of daily practices from developed countries. To understand and
correlate such activities with changes in air quality and associate different pollution events with root cause
activities, occupants must participate in the study, which is yet unexplored.

3 DEVELOPMENT OF DALTON

Contemplating the socio-economic factors of the developing countries and the lack of comprehensive field experimen-
tation, we have developed a custom hardware module that is very portable and easy to use, underscoring seamless
integration with any household. Multiple such devices are deployed in different rooms to monitor the pollution sig-
nature across a household. This sensing platform is named Distributed Air quaLiTy mONitor (DALTON ). Moreover,
the following section describes the primary design choices followed during the platform’s development to sustain a
large-scale deployment.

3.1 Scalable Design Requirements

To comprehend the overall pollution dynamics of a household in developing countries, we need to measure the pollutants
in various locations in the indoor space. The primary reason is the co-existence of multiple pollution sources. For
example, the simultaneous burning of fuel in the kitchen and ritual practices in the living space impact the air quality
differently in the adjacent rooms. Moreover, due to highly congested neighborhoods in developing nations, pollutants
from the side by the house can also degrade the air quality. Thus, single-point measurement is not a practical approach
to estimating the complex nature of pollutants and their spread. Thus, a multi-device deployment is necessary in this
scenario. However, such a multi-device system manifests several system-level challenges that must be addressed to
maintain sustainability in a real-world deployment. According to our observations, the primary requirements that need
to be satisfied for a viable multi-device platform are as follows:

• Cost Effective: The sensing device must be low-cost and affordable to be widely adopted by the masses in
developing countries. However, the device should measure the most frequently occurring pollutants in a general
household scenario. Therefore, the set of sensors should be selected considering a holistic observation of the
most frequent pollutants in developing countries and the development cost.

• Portable Hardware Design: Sensors are mounted over portable enclosures that can be deployed anywhere
in the house. The device assembly should be stable enough to prevent any fall damage; however, it must not
impose any bias in measurement due to obscured sensors. Thus, the packaging of the selected sensors is crucial
to quickly deploy the devices in a large-scale study and measure the unbiased pollutants in an indoor space.

• Remote Maintenance: Often, incremental firmware updates must be applied to the devices to patch existing
bugs or enable newly developed features. However, configuring each device manually and individually is not
feasible in a large-scale deployment. Moreover, debugging a certain malfunction in a set of devices is not doable
if the devices need to be physically accessed. Thus, it is necessary to have a remote management mechanism
that facilitates debugging and over-the-air updates to the devices and sustains error-free deployment.

• Fault Management: Apart from faulty sensors, a device can malfunction due to electrical surges or uninitialized
sensors after a power outage, resulting in wrong measurements of air pollutants. The device should have a fault
detection and recovery mechanism for a resilient sensing platform.
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Table 1. Overall specifications of DALTON sensing device

System Specification Sensor Operational Details

Microprocessor Xtensa®32-bit LX6
Clock 80~240 MHz Range Resolution Error Margin

Response
Time

Operational
Temp & RH

Memory ROM 448 KB
DUST [37]

PMx 0~500 𝜇𝑔/𝑚3 1 ± 10 𝜇𝑔/𝑚3 @0~100 𝜇𝑔/𝑚3

± 10% @100~500 𝜇𝑔/𝑚3
≤10 s -10~60 °C

0~99%SRAM 520 KB RH 0~99 %
0.1

± 2%
Connectivity Wi-Fi 2.4GHz T -20~99 °C ± 0.5 °C
Scan Rate (Hz) 1

MCGS [100]

NO2 0.1~10 ppm

– ≤30 s
-10~50 °C
0~95%

Max Power (W) 3.55 C2H5OH 1~500 ppm 1Max Current (mA) 760 VOC
Dimensions(mm) 112 × 112 × 55 CO 5-5000 ppm 0.5 ≤10 s
Weight (g) 160 MH-Z16 [41] CO2 0~10000 ppm 1 ± 100ppm +6%value ≤30 sPower Adapter DC (5V, 15W)

• Human-in-the-Loop Annotation: A multi-device pollution sensing setup enables granular measurement of
pollutants in a household. However, it is very challenging to identify the sole reason behind perturbed pollutants
without knowing indoor activities. Thus, a human-in-the-loop design in which the users can provide feedback to
the sensing platform is necessary to obtain this activity context of the indoor environment.

• User-friendly Interaction: The system should smoothly integrate into one’s daily lifestyle without incurring a
significant cognitive load due to the human-in-the-loop design. Thus, the interaction interface must be easy to
use and user-friendly for wide adaptability and better user participation.

To fulfill the above design requirements, we have accordingly designed the sensing device and the backbone IoT
infrastructure of the sensing platform, incorporating remote debugging, updating firmware, and several data processing
and fault recovery mechanisms. The hardware module and the IoT backbone design are explained as follows.

3.2 Low-cost Portable Hardware Design

11
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m
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55
 m
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DUST

MH-Z16

MCG

ESP32

Fig. 2. Prototype of DALTON sensing device.

The hardware prototype of DALTON sensing device is
shown in Figure 2. It is a portable lunchbox size (112
mm × 112 mm × 55 mm) module, equipped with mul-
tiple research-grade sensors that together measure the
concentration of most occurring pollutants, such as Par-
ticulate matter (PMx), Nitrogen dioxide (NO2), Ethanol
(C2H5OH), Volatile organic compounds (VOCs), Carbon
monoxide (CO), Carbon dioxide (CO2), etc. in a house-
hold of developing countries, along with Temperature (T)
and Relative humidity (RH). We utilize the ESP-WROOM-
32 chip as the on-device processing unit that packs a
dual-core Xtensa 32-bit LX6 MCU with WiFi 2.4GHz HT40 capabilities. Table 1 details the sensing device’s overall
specifications. The connectivity board is a two-layer printed circuit board (FR4 material). The outer shell of the module
is a 3D printed (PLA+ material) hollow structure with honeycomb holes so that the air within the module is the same
as outside, resulting in unbiased measurement of pollutants (at a sampling frequency of 1Hz). The overall cost of
assembling the module is around $250. Further, multiple replicas of such sensing devices are built to conduct a large-scale
measurement study in 30 households across four cities in India, involving 46 participants over six months.
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3.3 Remote Maintenance of DALTON

In this section, we describe the primary features of the IoT backbone and IP-independent design of the DALTON

platform to enable remote management and firmware upgradation on the fly to sustain real-world deployment.

3.3.1 IP-agnostic Design. To manage a real-world, large-scale IoT sensing infrastructure that spans multiple local area
networks, a public IP address for each module is not always attainable due to the constraints enforced by the Internet
Service Provider (ISP) and the limited domain expertise of the end user. Thus, we choose a publisher-subscriber-based
IP-agnostic approach where any sensing module can be uniquely identified by its ID. Such a design simplifies the initial
setup procedure for the end user. Moreover, the sensing modules can set up an asynchronous communication channel
among themselves by their respective device ID.

3.3.2 Over-the-Air Admin Control. To enable Over-the-Air control, the IoT backbone exposes endpoints for remotely
executing commands (i.e., reboot, reset, update, flash, etc.) in the sensing modules. Upon querying a specific endpoint
along with the device ID, the CMD Encoder keeps a log and encodes the command in a format that the sensing modules
understand. Subsequently, the CMD Pusher publishes the encoded command to the CMD queue as shown in Figure 3,
reliably broadcasting to all sensing modules via the asynchronous channel. At the device end, only the desired recipients
of the command decode and execute further, while others drop it.

3.3.3 Over-the-Air Firmware Upgrade. Moreover, we can upgrade any device’s firmware from a web interface by
uploading the latest bin file and pressing the flask button. The IoT backbone uploads the firmware to a firebase storage
bucket1 with a unique file descriptor and triggers a flash command via the CMD pusher with the associated file descriptor
so that the sensing modules can initiate an HTTP stream to the firebase storage bucket and upgrade the firmware.

3.4 Error Handling and Fault Management

Metadata Path Control PathSensor Data Path

CMD

+ /reboot

+ /reset

+ /update

+ /flash

Data Stream Stream
Processor

Fault Recovery

CMD Pusher
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+ /vocalAnnot
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<upload: file>

Firmware
Firebase<file:stream>

Fig. 3. IoT backbone microservices of DALTON platform. The solid
arrow represents streaming data. The dotted arrow represents meta-
data such as data statistics, change points, etc. The dashed arrow
represents error handling and control signals.

Here, we describe the stream processing pipeline, auto
fault recovery mechanism, and remote debugging capabil-
ities of the IoT backbone to ensure reliable data transfer
from all the deployed devices.

3.4.1 Reliable Data Storage. The IoT backbone employs
multiple microservices, each responsible for sub-tasks
as follows. Queuing service hosts a MQTT broker2 that
manages the data queue. Queuing of the data is necessary
to ensure first-in-first-out (FIFO) and one-time delivery in
the underlying asynchronous wireless channel utilized by
the modules. Each module publishes the pollutant mea-
surements to a specific topic via the broker, producing
a reliable data stream. Moreover, the queuing service al-
lows both-way indirect communication among sensing
modules and the rest of the IoT backbone. Data Stream

1https://firebase.google.com/docs/storage (Accessed: July 25, 2024)
2https://mosquitto.org/ (Accessed: July 25, 2024)
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(b) Change points in adjacent device (𝑚) in kitchen

Fig. 4. Detected time segments from the change points computed using the KLCPD algorithm for two adjacent devices in the bedroom
and kitchen. The event 𝐸𝑚2 in the kitchen’s device and 𝐸3 in the bedroom’s device are associated with significant time overlap.

Processor subscribes to the mixed data stream of the queuing service and decouples it into individual streams corre-
sponding to each module, storing the data in the Data Storage as shown in Figure 3.

3.4.2 Liveness Portal. Using a web-based liveness portal, we list all the live sensing modules sending sensor readings
into the IoT backbone. Moreover, the user can find information about the disconnected modules, such as the latest
timestamp when the module was live, location of deployment, view error log and plot live data to track down and
resolve any problem with the module.

3.4.3 Auto Recovery. Upon detecting any anomaly in the streaming sensor data, the stream processor triggers the Fault
Recovery microservice with the affected device ID; the fault recovery service determines the type of fault and suitable
recovery action (i.e., reboot) for the device. Consequently, it stores the error log in errorlog collection of the database
service and queries the Command Pusher to schedule the recovery action.

3.5 Human-in-the-Loop Labeling

We require human-in-the-loop ground-truth annotations of indoor activities within the household to associate the
measured pollution data. The microservices responsible for simplifying user annotations are as follows.

3.5.1 Change-Point Detection. Not every activity generates pollutants; thus, asking the users to annotate all the
activities will significantly waste their effort. Hence, we developed a sensing-aware solution to collect minimally-
required information by asking them to provide the activity labels corresponding to the higher concentration of
pollutants observed by our developed device. A naive threshold-based solution is not a good approach here, as it may
ask for frequent annotations with every peak in the measured pollution level. For example, during cooking, the sensors
may observe periodic short-duration pollution peaks depending on the kitchen’s ventilation and what is being cooked.
Thus, we utilized a change point detection algorithm Kernel Change Point Detection (KLCPD) [30] to compute change
points in the pollutant concentration of the indoor. Notably, DALTON platform is oblivious of the KLCPD algorithm
and can be used with other change point detection algorithms [29, 46, 63]. For example, Figure 4a shows an instance of
change points calculated for all the pollutant measures for one sensing module over the measurements of the whole
day. The change points are only considered when the module senses a significant difference in air quality, reducing the
number of noisy events (when the sensor data keeps varying in a small range as shown in Figure 4a, event 𝐸2).

3.5.2 Sensor Association to Reduce Labeling Effort. We deploy multiple sensor modules in a household to capture the
spatiotemporal diversity of the pollutants; however, annotating data individually for all the sensing modules further
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increases the users’ cognitive load. Therefore, depending on the time segment (pair of change points) overlaps and
adjacency of the sensing modules on each floor, we associate the pollution events to a subset of modules given that the
members of the subset experience similar trends of pollutants and thus, enabling us to identify different spatiotemporal
groups of modules within an indoor space. For example, we associate change points in the adjacent sensing module (𝑚)
of the kitchen shown in Figure 4b with the bedroom module shown in Figure 4a, for event 𝐸𝑚2 and 𝐸3 due to significant
degree of time overlap. This further reduces the effective number of events detected in all the sensing modules deployed
in adjacent household rooms.

3.6 App-based User-friendly Annotation

Uses Google
Speech to Text API

TextField to verify
converted Text

1

2

Submit
Annotation

3

Recognising

Fig. 5. Developed Android application for user-
friendly activity labeling. It uses Google’s speech-to-
text API for easy voice annotations.

Upon identifying a pollution event from the change point and sen-
sor association computation, an alert is triggered to the developed
Android application to annotate the causal indoor activity. The An-
droid app is shown in Figure 5. The app-based continuous annotation
process reduces the participants’ recall overhead. Moreover, the app
enables vocal annotations using Google’s speech-to-text API to min-
imize the physical and mental effort to track daily activities. After
logging in with their name (only once unless intentionally logged
out), the user needs to tap on the microphone icon, as shown in the
figure, to activate the speech recognition and start speaking. Once
the speech is correctly converted to the text, it populates the text
field with the annotation text. The user can verify and edit the text if
required before submitting the activity annotation with the annotate
button on the app interface. The app sends a post request containing
timestamped ground-truth activity labels to the Annotation microser-
vice of the IoT backbone, where it gets stored in the database.

4 KEY DEPLOYMENT OBSERVATIONS

In this section, we describe the field testing on the DALTON platform to evaluate its sensing capabilities in the real world.
We did a long-term deployment of the platform in several types of indoor spaces (i.e., households, labs, canteens, etc.) in
four cities in India, where different diffusion and spread patterns of harmful indoor pollutants such as VOCs, particulates,
carbon dioxide, etc. were measured. Our data reveals several pollution dynamics, particularly for developing countries,
which significantly impact the quality of a house’s air but have remained unattended due to a lack of awareness and
information. With its multi-point, human-in-the-loop sensing approach, DALTON shines in identifying short-term and
long-term pollution events and the impact of floor plan and room structures on the spread of pollutants. Details on the
field study are as follows.

4.1 Field Study Details

We deployed the DALTON platform in several indoor spaces, engaging the occupants in data labeling activities to collect
a representative dataset on indoor air pollutants. Depending on the number of rooms and area of the space, more than
one sensing devices are deployed at each measurement site. Our site selection and deployment plan is described next.
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Table 2. Deployment of the DALTON platform and the socioeconomic background of the participants.

City Measurement Site Indoor Pollution Occupants
Gender Education Income

Level
Name

Locality
Type Site Type # Sites

Ventilation
Appliances

Primary
Sources

Female
(%)

Male
(%) Degree

Tech
Expert

Bankura Rural Household 2 Window, Vent slits,
Exhaust Fan

LPG, Kerosine,
Food, Disinfectants 50 50 Bachelor No Low

Durgapur Suburban Household 2 Window, Vent slits,
Split AC,Exhaust fan

LPG, Microwave,
Food, Disinfectants

50 50 Doctorate Yes Middle
Kolkata Urban Household 4 44 56 Doctorate No Middle

Kharagpur Suburban

Household 5 60 40 Doctorate Yes Middle
Apartment 8 Window, Vent slits, Occupancy, Food 33 67 Student Yes Low

Food Canteen 2 Vent slits, Exhaust fan LPG, Food 50 50 Metric No Middle
Research Lab 5 Split AC, Window AC Occupancy 11 89 Student Yes Low
Classroom 2 Split AC, Central AC - - Student - -

4.1.1 Site Selection & Deployment. We have collected data for 30 measurement sites across four cities in India for over
six months on primarily five types of indoor environments, namely, households, studio apartments, research labs, food
canteens, and classrooms. We have carefully chosen the four cities such that they capture typical indoor pollution
dynamics in the developing region. Notably, in Bankura, most building constructions are unplanned and thus have
congested neighborhoods. The houses are naturally ventilated, and people are accustomed to daily cooking with locally
sourced food items and using LPG stoves, firewood, incense sticks, etc. Moreover, rural areas have a large body of
greenery and less outdoor pollution. In contrast, Durgapur is a well-planned industrial city with several operational
steel and sponge iron factories, resulting in significant outdoor pollution. The Kolkata is a metropolitan city where
most of the population is office goers and are habitual to air conditioners, packaged food ingredients, LPG gas stoves,
induction and microwave cookers, etc. Lastly, Kharagpur is a university town consisting of student apartments, faculty
housing, canteens, restaurants, etc. Table 2 summarizes the measurement sites, ventilation appliances, and primary
pollution sources for each city and indoor type. The percentage of each indoor type in the overall deployment is shown
in Figure 6a. The number of rooms and areas of the deployment sites vary from a studio apartment to a household.
The studio apartments mostly have one room that is approximately 150 sqft in size. Meanwhile, in a typical household,
there can be three to six rooms spanning about 600 to 1100 sqft. Figure 6b shows the area distribution of the sites.

We have placed at least one sensor in each room to effectively measure the spread of pollutants between rooms
in an indoor space. Moreover, the devices are deployed approximately at chest height (1.5 meter from the ground) to
measure the actual exposure level regarding the occupants. Thus, we have deployed 1-2 sensors per studio apartment,
3-4 sensors per classroom and lab, and 3-6 sensors per household. The Figure 6c depicts the number of deployed sensing
devices per 500 sqft area. The occupants of these measurement sites are requested to install the Android application
described in Section 3.6 and participate in the field study, providing feedback to the platform. The details on the user
demographics are presented below.

4.1.2 User Demographics. Figure 6d shows the distribution of the number of occupants per site, varying from one in a
studio apartment to eight in a household. In total, 46 occupants from 30 measurement sites participated in the study,
among which 27 participants are male and 19 participants are female. Table 2 shows the socioeconomic background
of the participants. The developed Android application lets the participants label indoor activities or events via voice
commands. The overall age distribution of the occupants is shown in Figure 6e. We can observe that most occupants
are aged between 20 to 40 years; thus, they are accustomed to using such Android apps in between their daily activities.
However, the youngest of the occupants is a 3 years old girl, and the oldest is a 84 years old man. They are too young or
old to participate in this study actively; thus, other members of the corresponding site (i.e., household) report their
indoor activities on their behalf.
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Fig. 6. Demographics and Details of the field-study.

The participants are college students, university staff, professors, homemakers, canteen owners, etc. Hence, the level
of expertise in handling and debugging the sensing devices in case of any failure varies drastically from participant to
participant. Here, the automatic fault recovery and remote debugging capabilities of the DALTON platform become
crucial for a sustainable deployment with minimal user intervention. Moreover, the Android app-based human-in-the-
loop labeling mechanism was quickly adopted by all the participants despite their different technical backgrounds.

4.1.3 Weekly Patterns in the Dataset. Here, we show the weekly and monthly variations of pollutants in the collected
dataset from the large-scale deployment of the DALTON platform throughout six months. The Figure 7 shows the
weekly and daily variation of VOC, CO2 levels, along with temperature and humidity change throughout the dataset.
The dataset is collected in both summer and winter, totaling over six months. Notably, after the summer season, we
upgraded the platform to integrate the remote management features and resume data collecting from the winter. This
time gap is highlighted in all the sub-figures of Figure 7. We observe a similar pattern in the maximum hourly VOC
exposure for the kitchen and bedroom as per the heat-maps shown in Figure 7a and 7b, which indicates that, in general,
pollutants emitted from the kitchen are spread towards the bedrooms.

During the summer (i.e., weeks W1 to W12), we observe a steady rise in temperature over the weeks as per Figure 7e.
As shown in Figure 7f, the overall humidity also increases from W7 week of the data collection. The food items and
fruits degrade quickly in high temperatures and humidity, releasing excessive VOCs; thus, we observe a rise in the
VOC levels in the kitchens and bedrooms from week W8 onwards. Regarding CO2 exposure in summer, we observe a
maximum peak in the kitchen during the first month when the temperature remains relatively comfortable, as shown
in Figure 7c. The primary reason for such observation is that we are more sensitive towards temperature change (detail
explanation and analysis in Section 4.4.2); thus, in comfortable temperatures, the kitchen exhaust fans are mostly turned
off, resulting in poor ventilation for the emitted CO2 (we observed this from the annotated labels as well). As the mean
temperature increases over the months, we observe that the CO2 peaks are reduced as the exhaust is turned on more
frequently, providing much-needed ventilation. Interestingly, CO2 in bedrooms do not significantly correlate with the
kitchen, implying that CO2 exposure is contained near the source, where VOC spread across the entire household.

However, during winters (i.e., weeks W13 to W25), the environment becomes humid, and the temperature continues
to decrease over the weeks. Therefore, occupants tend to close all windows of the indoor space to maintain above 20°C
temperature. The kitchen exhaust is also unused due to low temperature, and the heat generated during cooking further
improves the thermal comfort for the occupants. As a result, the exposure to pollution is drastically increased across
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Fig. 7. Daily indoor trends by week and month. We observe higher concentrations of VOC and CO2 during the winter months.

the indoor space. For instance, the kitchen becomes the most contaminated room, and pollutants such as VOC and
CO2 spread toward the bedrooms. Accordingly, we observe in Figure 7a, and Figure 7b, VOC is correlated between
kitchen and bedroom in winter. Unlike summer, CO2 spreads further into the indoor space, and we observe a correlation
between kitchen and bedroom CO2 measurements from week W15 onwards. Building upon these observations, we
next analyze the indoor pollution behaviors for specific scenarios such as inadequate ventilation, degree of ventilation,
indoor activities, etc., along with the spatiotemporal spread of pollutants based on floor plans and room structures.

Key Lesson: 1

Different pollutants show different spatiotemporal behavior in indoor environments based on types of activities.
The seasonal temperature and humidity changes greatly influence occupant’s activities. Winter observes a
higher degree of spread between the kitchen and other rooms of a household due to compromised ventilation
for maintaining a comfortable temperature.

4.2 Inadequate Ventilation

The user-inclusive design of DALTON in labeling the indoor events and activities, along with measuring changes in
pollutant levels, enables us to isolate several commonly occurring pollution instances in bedrooms, kitchens, hall rooms,
etc., where the pollutants accumulate over time due to lack of ventilation. Here, we highlight its severity regarding the
pollution exposure and the exposure duration. Our observations are as follows.

4.2.1 Bedrooms with Split AC. To improve the power efficiency, split AC circulates the air within a room [50, 98],
rather than pulling air from outside, to ensure effective air-conditioning with minimal energy cost [38]. Therefore,
it provides no ventilation for the airborne contaminants, leading to long-term accumulation of harmful pollutants
such as VOC, CO2, Ethanol, etc. In developing countries like India, which has an extended summer season, it’s very
common for middle to high-income households to use split AC during the night hours (i.e., 12:00 AM to 7:00 AM)
for a comfortable sleep. However, it leads to unintentional overnight exposure to pollutants. For instance, Figure 8c
depicts the degree of pollutant accumulation in the bedroom due to closed windows when the split AC is running
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Fig. 8. Windows are closed for effective air conditioning using split AC. Thus, CO2 and VOC accumulate dangerously over the night
hours in summer when the split AC is running. Sub-figure (a) shows CO2 concentration almost triples compared to when the windows
are open. CO2 gets ventilated in the morning when the windows are opened again. However, sub-figure (b) depicts VOC persists for a
little longer. The degree of accumulation for other pollutants is shown in sub-figure (c).

compared to when the windows are open and the split AC is off. We observe highly elevated levels of CO2, increased
VOC contamination from midnight to early morning as the occupants sleep, keeping the windows closed while using
the split AC. Figure 8a and 8b show the distributional changes of CO2 and VOC concentration, respectively on an hourly
basis for the night hours. As per the figures, the occupants experience, on average, two times CO2 exposure due to poor
ventilation. Similarly, VOC accumulates approximately 1.3 times more strongly in lack of ventilation. However, In the
morning, the CO2 gets ventilated quickly with windows opening as indicated by the sharp dip in concentration from
7:00 AM onwards in Figure 8a. Meanwhile, VOC levels persist longer even with the opened window in the morning,
indicating that some pollutants are more complicated to ventilate than others and, thus, more harmful in the long term.
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Fig. 9. In sub-figure (a), the kitchen shows sudden spikes of CO2
while cooking. CO2 accumulates in the bedroomwhile using split AC.
On average, the bedroom is exposed to higher CO2 concentration
and 15.2% more unsafe than the kitchen, as per sub-figure (b).

4.2.2 CO2 in Kitchen Vs Bedroom. By associating the
readings from the sensors and the human-annotated
event and activity data, we observe that the pollutants
can either be emitted rapidly (e.g., during cooking) or
accumulate at a slower rate over a long time (e.g., in a
non-ventilated bedroom at night). We, as humans, are
more sensitive to rapid changes in the environment
and can act to reduce the exposure by turning on the
ventilation system or opening up thewindows. However,
the primary problem arises when the emission rate is
very low, but due to poor ventilation, pollutants get
trapped over an extended period, for instance, while
using a split AC when sleeping. For the households that
use split AC in the bedroom, we compare the CO2 exposure between the kitchen and the bedroom during the polluting
hours. As shown in Figure 9a, the kitchen observed a sudden peak of CO2; the majority time of the day, it remained
within the safety threshold (≤ 1000 ppm). At the same time, the bedroom remains polluted for an extended period.
Unlike developed countries where indoor spaces are ventilated with central Heating, Ventilation, and Air Conditioning
(HVAC) systems, in developing nations, people tend to use low-cost alternatives like split AC for summer and room
heaters for the winter season, where both require windows to be closed to work efficiently, leaving out the crucial
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ventilation aspect of HVAC systems. Therefore, in both seasons, indoor spaces in developing countries suffer from
pollutant accumulation in bedrooms, living rooms, etc., compared to the kitchen.

Considering the overall CO2 exposure in a day for this particular household, the bedroom was unsafe for 21.9%
of the time, whereas the kitchen was unsafe for only 6.7%. Notably, from the data collected over the households, we
observe that the users were more sensitive towards the rapid changes in environmental temperature and humidity of
the kitchen (this hypothesis is further validated in the next section) and thus turned on exhausts or opened windows to
allow the contaminants to ventilate away. Therefore, we observe a tailed distribution in Figure 9b with rapidly declining
instantaneous values of CO2 in Figure 9a. However, they were completely unaware of the high level of CO2 getting
accumulated in the bedroom when they were sleeping due to air-conditioning. Indeed, no actions were taken by the
users to reduce the CO2 pollution in the bedroom, leading to harmful exposure for an extended period.

Key Lesson: 2

Energy saving in developing regions may come with the cost of expedited exposure to indoor pollutants.
Consequently, the bedroom can be more vulnerable than the kitchen in terms of overall pollution exposure.

4.2.3 Cooking with the Exhaust Off. Long-term deployment of the DALTON platform captures the general human
behavior in the kitchen while choosing to turn on the exhaust fan for ventilation. Even though the concentration
of pollutants in the kitchen is significantly reduced after turning on the ventilation, as shown in Figure 10, from
the collected data, we observe that the event of turning on the “exhaust fan” is conditioned on relatively higher
environmental temperature as compared to when the occupants choose not to do so. In hindsight, turning on the
ventilation reduces the kitchen’s humidity but does not affect the temperature significantly; thus, we hypothesize that
occupants are more comfortable in a less humid environment when the temperature is high. Conversely, the occupants
ignore ventilation when the temperature is less, even though the humidity is high.
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Fig. 10. Saturation levels of the pollutants with ex-
haust off vs on. Pollutants accumulate when the ex-
haust fan is off during cooking. Notably, the exhaust
is turned on only at high temperature.

Geographically, most developing countries are located near the
equatorial region [1]. Thus, the typical climate in such countries is
hot and humid most of the year. Therefore, the people in these regions
are more exposed to kitchen pollutants during the winter when they
forget to turn on the exhaust due to lower environmental tempera-
ture. Several studies [4, 76] uncover the health impact of increased
indoor pollution levels during the winter season. This typical human
behavior can be seen by comparing the humidity and temperature
box-plots for both “exhaust off” and “exhaust on” in Figure 10. Such
human behavior also highlights our limited sensory capacity to ac-
cess our surrounding air quality and motivates us to conduct further
human-centered field experiments with the DALTON platform.

Key Lesson: 3

The pollutants emitted and the general human response will vary depending on the activity. Temperature
changes are more apparent to humans, so they know to turn on ventilation, but they cannot sense pollutants
accumulating around them, meaning they are unknowingly exposed to them.
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Fig. 12. The kitchen exhaust fan is off; thus, household H1 is ventilated by natural airflow through open windows. Pollutants emitted
during cooking in the kitchen (A) spread to the side by the bedroom (B). However, the dining (D) remains unaffected.

4.3 Spread of Pollutants across Rooms

A
C

B

D

E

Fig. 11. Household-1 (H1).

Realizing the drawbacks of insufficient airflow in several scenarios of indoor
spaces, we have utilized the DALTON platform to validate if increased airflow
can reduce pollutant accumulation. Yet, we observed that uninformed decisions
to modulate airflow can spread pollutants toward the other rooms of the indoor
space. The room structure and the floor plan also act as additional factors that
influence the velocity and degree of spread over the nearby rooms from the
pollution source. Following are the observations.

4.3.1 Effect of Airflow. To describe the impact of different airflow modulations,
we present an indicative middle-income household H1, where the kitchen is the
acting pollution source. The floor plan of household H1 is shown in Figure 11,
where the kitchen is marked as (A), and nearby bedroom and dining are marked
as (B) and (C), respectively. We have observed three airflow scenarios from the long-term data of H1 when H1 has
(i) Natural Airflow through Open Windows, (ii) Active Ventilation in the Kitchen, and (iii) Swirling Airflow in Dining. A
comparative analysis of the spread of pollutants for the above three scenarios is shown below.

(i) Natural Airflow through Open Windows: In this scenario, all the windows of H1 are open; thus, the indoor space
is naturally ventilated throughout cooking in the kitchen. Due to lack of active ventilation, pollutants accumulate in
the kitchen (A) and eventually spread to the nearby bedroom (B), increasing its VOC and PM2.5 concentration as per
Figure 12b, even after the cooking is ended. Most CO2 gets ventilated through the kitchen’s open window. The dining
(C) is slightly impacted as shown in Figure 12c. However, according to Figure 12a, the kitchen observes a moderate
exposure; hence, there is scope for improvement by modulating the airflow around the indoor space.

(ii) Active Ventilation in the Kitchen: In this scenario, the kitchen exhaust fan is turned on; thus, most of the pollutants
generated during cooking are efficiently dispersed to the outdoors, keeping exposure in the kitchen (A) at its minimal
level as shown in Figure 13a, The nearby rooms are slightly affected as depicted in Figure 13b, and Figure 13c. We
observe a slight increase in VOC concentration in the nearby bedroom (B) as VOC is relatively complex to be entirely
ventilated with airflow and eventually spreads towards other rooms from the source. However, the dining (C) remains
unaffected throughout the scenario. Turning on active ventilation with an exhaust fan is the best approach to minimize
pollution spread over an indoor space.
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Fig. 13. The kitchen exhaust fan is on, dispersing most pollutants from household H1 to the outdoors. Therefore, the pollutants
emitted during cooking in the kitchen (A) are effectively ventilated, and the other rooms remain largely unaffected.

(iii) Swirling Airflow in the Dining: In this scenario, the kitchen exhaust fan is off, whereas the ceiling fan in the
dining area is turned on. The swirling airflow around the ceiling fan pulls pollutants toward the dining room, resulting
in maximum spread across the indoor space. Pollutants from the kitchen (A) are forced not to naturally ventilate via the
open windows as the ceiling fan pulls the pollutants. Therefore, the kitchen observes the worst pollution accumulation
among the above three scenarios as per Figure 14a. Subsequently, dining (C) marks a sharp increase in pollutants, as
shown in Figure 14c. However, Figure 14b shows that pollutants gradually increase in the nearby bedroom (B) and linger
for prolonged periods after cooking. Even with an opened kitchen window, CO2 is pulled into the dining. Therefore,
keeping the dining fan on and the kitchen exhaust off will result in the worst interior spread of pollutants and adversely
affect air quality throughout the indoor space. In addition to such airflow dynamics, the room structure and the floor
plan of an indoor space provide the necessary pathways for migrating pollutants, impacting the velocity of their spread
over different locations of the indoor environment.
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Fig. 14. The kitchen exhaust fan is off, while the dining ceiling fan of household H1 pulls the pollutants inward due to swirling airflow.
Subsequently, it results in a worse spread where the kitchen (A), side by the bedroom (B), and dining (C) are all polluted.

Key Lesson: 4

Although it is well known that ventilation impacts pollutants in a room, the complex air circulation patterns
(due to ceiling fan, exhaust, etc.) in the households of developing countries significantly affect the spreading of
the pollutants across other rooms, even when the pollution source (like, kitchen) has ventilation support.
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Fig. 15. Spatiotemporal spread of – (a) VOC, and (b) CO2 from the kitchen (A) in Household H1. The pollutants spread to the side by
the bedroom (B) and the dining room (C, D) with time. The cooking starts at 𝑡 and ends at 𝑡+11 minutes. The CO2 normalizes within
6 minutes at 𝑡+17 minutes. Finally, at 𝑡+48 minutes, 37 minutes later, the VOC normalizes; however, trapping of VOC can be observed
in the bedroom (E).

The following section highlights this phenomenon in detail with the help of real-world data collected from multiple
measurement sites with different floor plans using the developed platform.

4.3.2 Impact of Floor plan and Room structure. The floor plan directly influences the velocity of the spread of pollution,
and the degree of such influence varies according to specific pollutants. For instance, VOC spreads more aggressively
than CO2 in indoor spaces. Moreover, we identified two crucial behaviors of indoor pollutants, namely (i) Linger and
(ii) Trap, that significantly impact the overall exposure level of the occupant throughout the day. Such behaviors are
generally temporally related, and lingering pollutants in a sub-optimal building structure lead to trapping the same. We
define these behaviors as follows: (i) Linger: The pollutants keep accumulating for some time in different regions of an

indoor space even after the primary pollution source is deactivated and linger for an extended period. (ii) Trap: Pollutants
get confined into specific indoor regions due to lack of ventilation and remain trapped for a long time. To visualize and
illustrate such spread patterns of the pollutants in different indoor spaces, we have chosen three exemplar households
from our dataset, each having a significantly different floor plan design. Moreover, we present a contrastive analysis of
the VOC and CO2 spread in these households and identify multiple architectural shortcomings.

(i) Floor plan with well-ventilated Kitchen: Household-1 (H1) is an 1100 sqft indoor space with six rooms, including
the restroom. The upper-right side room remains locked, and the restroom is outside the scope of this study. Therefore,
we have placed five sensing devices in the kitchen (A), side by bedroom (B), dining room (C and D), and second bedroom
(E). The household has large windows in front of the dining room and kitchen that naturally provide efficient ventilation
for the pollutants. The Figure 15a presents the spatiotemporal spread of VOC in H1 during and after cooking activity
in Kitchen (A). According to the annotation from the occupant, cooking starts at 𝑡 time and gets over by 𝑡+11 mins.
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Fig. 16. Spatiotemporal spread of – (a) VOC, and (b) CO2 from the kitchen (A) in Household H2. The cooking starts at 𝑡 and ends at
𝑡+30 minutes. Due to the connected room structure of H2, the pollutants quickly spread throughout the household. We observed a
drop in pollution levels at 𝑡+50 minutes, 20 minutes after the cooking activity ended.

However, VOC continues to spread to other internal rooms of the household. At 𝑡+17 mins, pollutant concentrations
deplete without active ventilation. Even after 48 minutes, the VOC lingered in the kitchen, and surprisingly, Bedroom
(E) had a relatively higher VOC concentration than the usual scenario. Seemingly, pollutants such as VOC, Ethanol, etc.,
are hard to ventilate and get trapped in indoor regions with sub-optimal ventilation, leading to increased exposure in
indoor environments. Notably, the dining room (C and D) is ventilated easily by the nearby windows.

In contrast, CO2 is not as aggressive as VOC while spreading indoors. As per the Figure 15b, CO2 peaks at 𝑡+8 mins
but mostly remains confined within the Kitchen area. The dining place is slightly impacted; however, the other two
bedrooms (B and E) remain unaffected. Most importantly, we observe that CO2 gets ventilated efficiently and quickly
depletes to usual levels within 6 mins (see sub-figure 𝑡+17 min) from the end of the cooking activity; hence, does not
linger for an extended time.

(ii) Floor plan with Kitchen and Hall: Household-2 (H2) has a kitchen (A) and a large hall room within an 1100
sqft. Interestingly, the hall is segregated into living area (B), dining (C), and bedroom (D). These hall regions share the
air quality due to the absence of walls. Compared to well-partitioned floor plans, H2 has less number of windows to
ventilate pollutants from the indoor space naturally. Therefore, we have selected H2 due to its open and interconnected
floor plan, compromised natural airflow, and ventilation. The sensing devices are deployed in the kitchen and all
segregated regions of the hall room. As depicted in Figure 16a, the living area, bedroom, and dining area in the hall
room get uniformly polluted throughout the cooking activity in Kitchen (A) that started at time 𝑡 . From the beginning
of the activity in Kithcen, we observe a rapid spread of the pollutants from the kitchen towards the hall room due to the
open and interconnected floor plan of H2—the VOC concentration peaks at 𝑡+16 mins. The activity ended at 𝑡+30 mins;
yet, the household captures significant VOC even at 𝑡+50 mins. In the figure, we can observe the accumulated VOC in
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Fig. 17. Spatiotemporal spread of – (a) VOC, and (b) CO2 from the kitchen (A) in Household H3. The cooking starts at 𝑡 and ends at
𝑡+33 minutes. Both the pollutants get trapped in H3 due to the isolated room structure. CO2 normalizes 57 minutes later at 𝑡+90
minutes when VOC persists in the kitchen (A) and the living room (B).

dining even after 20 minutes from when cooking ended. Therefore, shared room designs are ineffective in ventilating
VOC efficiently, primarily due to compromised ventilation.

In contrast, CO2 mostly remained concentrated near the kitchen and gradually migrated towards the hall over time.
As per the spatiotemporal plots in Figure 16b, CO2 spread at each room around 𝑡+16 mins due to the interconnected
nature of the floorplan, giving pathways for the pollutant to migrate to other regions of the household. The CO2 quickly
depletes as the pollution-generating activity, cooking, ends; finally, the CO2 gets normalized at 𝑡+50 mins.

(iii) Floor plan with isolated Kitchen: Household-3 (H3) is a 1,200 sq ft indoor space with seven rooms, including
two restrooms. We deployed sensors in the kitchen (A), living room (B), dining (C), bedroom (D), and bedroom (E). We
have chosen household H3 as the primary pollution source (i.e., the kitchen) is situated at one corner of the household;
therefore, the kitchen is isolated from the other rooms. The Figure 17a shows the spread of VOC over time and space.
Even though the cooking activity ended at 𝑡+33 mins, the VOC continued lingering mainly towards the living room
(B) and dining (C). From the dining room, VOC is further migrated to both bedrooms (D and E) at a slower rate than
Household H2. However, with a slower spreading rate, the pollutants are also ventilated slowly. Thus, a significant
amount of contaminants was trapped in a less ventilated bedroom (E); see the degree of accumulation in 𝑡+47 mins
sub-figure even after 14 minutes of no activity in the kitchen. Meanwhile, in bedroom (D), the VOC is efficiently
ventilated due to open windows. At 𝑡+90 mins, even 57 mins after the cooking activity has ended, we can see that VOC
still lingers across different regions (i.e., trapped in the living room and kitchen) of household H3. We can observe that
the VOC in the kitchen is not getting ventilated due to its cornered placement in the floor plan design.

We observe that CO2 gets uniformly distributed from the kitchen to the entire household; however, it takes comparably
more time to deplete in H3. The 𝑡+47 mins sub-figure of Figure 17b shows that after 14 minutes of no activity in the
kitchen, the CO2 levels do not decrease in any of the rooms of H3 except in the kitchen. Further, the pollutants
accumulate in the bedroom (E). However, CO2 efficiently depletes to normal levels over time without active ventilation,
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Fig. 18. Variations in concentrations of (a) CO2, and (b) VOC over hours of the day. Daily activities significantly influence the
pollutants in the kitchen, dining room, and bedroom. For example, the bedroom gets polluted when the AC is on and the windows are
closed. Similarly, the kitchen and dining area get polluted when food is prepared.

as shown in the 𝑡+90 mins sub-figure. Meanwhile, VOC is much more challenging to ventilate and prone to getting
trapped within less ventilated indoor regions.

Key Lesson: 5

Pollution levels in crucial hot-spot areas such as the kitchen and the living room are greatly influenced by the
activities, floor plan, and dynamic indoor air-circulation patterns, which affect the trapping and lingering of
the pollutants in different rooms.

In summary, isolated rooms are less exposed to pollutants; however, pollutants accumulate in such indoor regions due
to compromised ventilation. In the worst case, an isolated kitchen can lead to trapped and long-term lingering pollutants
in a household. Regarding more open and interconnected floor plan designs, they are prone to spread and lack adequate
ventilation for harmful pollutants like VOC. Room structures that accommodate large windows can be very effective
in recovering from a major pollution event. Lastly, a few pollutants (i.e., VOC, Ethanol, etc.) are more aggressive in
spreading and challenging to ventilate, irrespective of the floor plan and room structures. However, sub-optimal room
structures (i.e., proximity to the kitchen, interconnected rooms, and fewer windows) further complicate indoor pollution
dynamics and lead to the trapping of pollutants for an extended time. Indoor pollution primarily depends on the events
and activities the occupants perform. The following section explores the emission levels of several contaminants with
daily practices and activities, highlighting the short and long-term impacts on air quality.

4.4 Daily Activities and Pollution

Indoor pollutants exhibit distinct accumulation and spreading patterns based on the activity and how the activity is
being performed. Therefore, indoor pollutants follow a periodic pattern in our daily household activities. Specifically,
different parts of the indoors behave as acting pollution sources at different times of the day. Therefore, in Figure 18,
we observe that the median CO2 and VOC concentrations are significantly different across the kitchen, dining, and
bedroom for different hours of the day. For instance, Figure 18a shows that in the kitchen, CO2 is emitted during
cooking, and with good ventilation (exhaust fans, open windows, etc.), it quickly descends to normal levels. However,
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for the bedroom, the median CO2 levels are high (more than even the kitchen’s peak CO2) throughout the night hours,
mainly due to lack of ventilation as shown in Section 4.2. Further, VOC also shows similar accumulation patterns as
CO2 in the bedroom and kitchen. However, unlike CO2, VOC does not deplete rapidly even with good ventilation and
lingers for an extended period, resulting in long-term exposure as shown in Figure 18b (see bedroom from 18:00 to
21:00). Moreover, VOC is naturally emitted from fruits, vegetables, food residuals; thus in the figure, we see a steady
increase of VOC in the kitchen from the evening hours until the kitchen is cleaned (see 22:00). Accordingly, the dining
place also observed an increase in the VOC during lunch, which gets descended after the dining was cleaned.
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Fig. 19. Emitted pollutants such as – (a) Ethanol from fruit scraps in dining, (b) VOC
and Ethanol from Food residuals and dirty dishes in the kitchen. It can be observed
that the pollutants accumulate in the kitchen overnight and persist till the next day.

We identified a few cases where the
occupants underestimated the severity of
pollution generated due to their behavior,
which can lead to unintentional long-term
exposure. For instance, fruit scraps and
meal residuals left in an indoor location
(i.e., kitchen sink) cause extended contam-
ination, or how the food is being cooked
generates different pollution intensities.
Details of such cases are shown below.

4.4.1 Fruit scraps and Food Residuals.

Due to the fine-grained activity annota-
tion from the users, we can associate mi-

nor changes in pollutants with the root cause. For example, Figure 19a depicts the rise in the Ethanol concentration at
the nearby sensing modules when the user cuts fruits at the dining table, and the scraps are disposed of after a while.
We can observe that both the sensors capture the event at almost a similar time; however, the nearest one experiences a
higher exposure. Similarly, Figure 19b shows the measurements from a kitchen during the night hours. The excess food
residuals and dirty dishes in the kitchen sink cause elevated levels of VOC and Ethanol until the kitchen is cleaned up
the next day. Notably, such association of annotated events with the pollutant readings sensed over different adjacent
rooms in a household can provide the user a clear understanding of the room’s healthiness, along with the spreading,
trapping, and lingering nature of the pollutants across the adjacent rooms, leading to specific, actionable items for them,
thus promoting healthy living.

4.4.2 Cooking Method. Pollutants can exhibit entirely different distributions based on how an activity is performed.
Thus, the context of the activity like “What is being cooked” or “Which detergent is used while cleaning the floor” is
more critical for characterizing which pollutants will majorly contaminate the indoor environment. To realize such
complex pollutant dynamics, we observe three types of cooking activity, namely boiling, frying, and steaming, which
have significantly dissimilar pollutant signatures as shown in Figure 20.

In the case of boiling, we can see an increase in the humidity, while most of the pollutants are dormant except CO and
CO2 as the kitchen’s ventilation system is usually underused, resulting in accumulation of such gases. Whereas, frying
emits a lot of C2H5OH, NO2, VOC, and increases the temperature in the kitchen; thus, the exhaust fan is generally
turned on, significantly lowering the concentration of CO, CO2 and particulate matters (PMx). Unlike frying, steaming

does not increase temperature significantly, leading to under-utilization of the exhaust fan, as we observed from our
dataset. However, unlike boiling, steaming emits lots of pollutants such as C2H5OH, NO2, PMx, VOC that accumulates
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Fig. 20. Saturation of pollutants for different cooking methods. Boiling emits the least pollutants except CO and CO2 from the burner.
Frying increases temperature, so occupants turn on the exhaust fan, improving the ventilation. Steaming emits the most pollutants
among the above cooking methods.

throughout the activity. Moreover, due to lack of ventilation, CO and CO2 also accumulate, resulting in the highest
exposure among the three cooking activities. Such observations further strengthen our hypothesis in Section 4.2.3 that
humans are more sensitive to high environmental temperature and humidity, which leads to unintentional accumulation
and spreading of harmful pollutants indoors.

Key Lesson: 6

Steaming may create more pollution than frying if the kitchen’s ventilation is poorly controlled due to human
perceptions of the environment. Consequently, correlating activities with the pollutant distributions across
different rooms is vital to provide actionable insights to the users for improving the household’s air quality.

4.5 Qualitative Analysis of DALTON

To realize the practical utility of DALTON platform from the user’s perspective, we have conducted a PSSUQ (Post
Study System Usability Questionnaire) survey on the usefulness and user-friendliness of the sensing device. PSSUQ
survey questionnaires primarily consist of various statements regarding the underlying system’s quality, utility, and
effectiveness. The study participants were asked to agree or disagree with these statements on a 7-point Likert scale (i.e.,
Strongly Disagree, Disagree, Somewhat Disagree, Neutral, Somewhat Agree, Agree, Strongly Agree). The Statements
that are asked about the system in the survey are as follows:
System Usefulness (SYSUSE)

UQ-1 Overall, I am satisfied with how easy it is to deploy the devices in my house.
UQ-2 It was simple to configure the devices with my home’s WiFi and start using the system.
UQ-3 I could monitor my home’s air quality using this system.
UQ-4 I felt comfortable using this system.
UQ-5 It was easy to reconfigure a device locally/remotely if needed.
UQ-6 I believe I could become more cautious and aware of my home’s air quality using this system.

Information Quality (INFOQUAL)

UQ-7 The device resolved the errors itself or gave me error messages that clearly told me how to fix problems.
UQ-8 Whenever I made a mistake using the system (e.g., turning off the power), I could recover easily and quickly.
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Fig. 21. User agreement with different survey questionnaires. In total, 87.5% agree with the aesthetics, everyone agrees with an
increase in awareness for indoor air quality, and are satisfied with the DALTON platform.

UQ-9 The process to deploy and configure the devices was clearly mentioned.
UQ-10 It was easy to find the information I needed to set up the devices for the first time.
UQ-11 The configuration steps were very easy and effective for quickly setting up the devices.
UQ-12 The device’s build quality is good and structurally strong.

Interface Quality (INTERQUAL)

UQ-13 The device looked nice in different rooms of my home.
UQ-14 I liked using this system to monitor my home’s air quality.
UQ-15 This system has all the functions and capabilities I expect it to have.
UQ-16 Overall, I am satisfied with this system.

To estimate the stress and effort levels for the activity annotation using the developed Android application, we have
further conducted a NASA-TLX (NASA Task Load Index) survey. The NASA-TLX survey questionnaires represent
Cognitive Demand (CD), Physical Demand (PD), Temporal Demand (TD), Mental Effort (ME), Performance Effort
(PE), and Frustration Level (FR) of the participant while annotating her activities throughout the day. For each survey
questionnaire, the participants are asked to fill in the responses on a scale of 1 (very low task load) to 20 (very high task
load). Following is the list of the survey questions.

TQ-1 (CD) How much speculation, decision-making, or calculation was required to perform the activity annotation?
TQ-2 (PD) The amount and intensity of physical activity required to complete the activity annotation.
TQ-3 (TD) The amount of time spent in completing the activity annotation.
TQ-4 (ME) How much effort do you have to put in to perform the annotation task?
TQ-5 (PE) How difficult was it to recall the correct events corresponding to a change point while annotating?/ How

difficult was it to get the correct annotation as instructed by you to the application?
TQ-6 (FR) How much stress were you while annotating events?

Both the PSSUQ and NASA-TLX survey questionnaires were floated among the participants during the last week of
data collection. Based on the survey responses, we present a qualitative analysis of the DALTON platform as follows:

4.5.1 Portable Design of DALTON Platform. As depicted by several studies on existing air quality monitors, compactness
and portability play a vital role in how quickly the monitor will be blended into the household, and the occupants also
accept it as a part of their surroundings. Thus, the DALTON sensing module is designed keeping in mind the aesthetics
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Fig. 22. Quality metrics of the DALTON platform and workload demand for human-in-the-loop annotation process. The overall score
of the platform is 2.04, implying a highly practical system. The reported frustration level for the annotation process is 3.21 out of 20.

criteria as well. As shown in Figure 21a, from the survey responses, we found that 43.8% strongly agree, 12.5% agree,
and 31.2% Somewhat agree, totaling 87.5% agreement among the participants that the sensing devices of DALTON
platform look nice in the rooms of their household. Notably, only 6.2% of the participants disagree with the aesthetics
of the platform, whereas 6.2% remain neutral, indicating room for further improvements.

4.5.2 Indoor Pollution Awareness. The effectiveness of a platform in making the end user more cautious about his
surroundings is a crucial property in the case of air quality monitoring systems. As shown in Figure 21b, we observe
that 56.2% users strongly agree, 25% agree, where others somewhat agree that they have become more aware of the
pollution events and hot-spots, as a result, become more cautious about their house’s air quality.

4.5.3 Ease of use & User-friendly Platform. User satisfaction primarily depends on the user-friendly design of the
system, ease of use, robustness against failures, and user interactiveness. During the PSSUQ survey, we asked whether
the user was satisfied with the DALTON platform (UQ-16). Figure 21c, shows the user agreement responses for the
satisfaction level where 43.8% strongly agree, 18.8% agree, and others somewhat agree that they are satisfied while
using the platform for six months of field study.

4.5.4 System Usability andQuality Metrics. The PSSUQ questionnaires are further grouped to compute metrics such
as system usability (SYSUSE, UQ-1 to UQ-6), information quality (INFOQUAL, UQ-7 to UQ-12), interface quality
(INTERQUAL, UQ-13 to UQ-16), along with the overall utility score (OVERALL, UQ-1 to UQ-16) as described in
Section 4.5. These metrics denote scores on a scale of 1 (strongly agree) to 7 (strongly disagree) to quantify each of the
qualities mentioned above of the underlined platform. Based on the survey responses, the system usability score is
2.03, the information quality score is 2.14, and the interface quality score is 1.92, resulting in an overall score of 2.04 as
depicted in Figure 22a. Therefore, we can realize that the platform strikes as practical, and users overall agree on the
general utility of the system to monitor the air quality of their indoor spaces.

4.5.5 App-based Annotation Workload. As discussed in Section 3, we developed an Android application to easily
annotate the activities on the fly. Moreover, the ending of a particular event is detected with the help of the change-point
detection module, reducing the participant’s mental load. To understand the workload-related factors during annotation,
we conducted the NASA-Task Load Index (TLX) survey, as mentioned earlier. Figure 22b, shows TLX-scores (between
1 to 20) for the factors Cognitive Demand (CD), Physical Demand (PD), Temporal Demand (TD), Mental Effort (ME),
Performance Effort (PE), Frustration Level (FR). From the figure, we observe that the app-based annotation process
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Table 3. Features vs. price comparison between commercially available air quality monitors and DALTON (Approximate price as of
July 25, 2024).

Devices
Remote

Maintenance
Actionable
Insights

User
Feedback Visualisation

Pollutant
Count

Measured
Pollutants

Cloud
Connected

Price
(USD)

Pallipartners [17] ✗ ✗ ✗ Screen 4 CO, CO2 , HCHO, VOC ✗ 101
Yvelines [18] ✗ ✗ ✗ Screen 4 PMx , CO2 , HCHO, VOC ✗ 113
Smiledrive [21] ✗ ✗ ✗ Screen 3 PMx , HCHO, VOC ✗ 119
INKBIRDPLUS [19] ✗ ✗ ✗ Screen 2 CO2 , PMx ✗ 119
ExGizmo [11] ✗ ✗ ✗ Screen 1 PMx ✗ 119
NETATMO [81] Low ✓ ✗ Screen, App 1 CO2 ✓ 186
INKBIRD IAM-T1 [16] Low ✓ ✗ Screen, App 1 CO2 ✗ 239
Luft [20] Low ✗ ✗ Screen, App 3 Radon, VOC, CO2 ✓ 249
Kaiterra Laser Egg [13] Low ✗ ✗ Screen, App 2 PMx , CO2 ✓ 263
Temtop LKC-1000E [12] ✗ ✗ ✗ Screen 2 PMx , HCHO ✗ 287
AirKnight [15] ✗ ✗ ✗ Screen 4 PMx , CO2 , HCHO, VOC ✗ 299
Airthings [8] Moderate ✓ ✗ Screen, App 4 Radon, PMx , CO2 , VOC ✓ 299
IQAir [10] Low ✓ ✗ Screen, App 2 PMx , CO2 ✓ 357
Aranet4 Home [14] Low ✓ ✗ Screen, App 1 CO2 ✓ 442
Pranaair Sensible [6] Moderate ✓ ✗ Screen, App, Web 6 PMx , CO, CO2 , O3 , HCHO, VOC ✓ 705
pranaair Sensible+ [7] Moderate ✓ ✗ Screen, App, Web 7 PMx CO,CO2 , NO2 , SO2 , HCHO, VOC ✓ 837
DALTON (Our) High ✓ ✓ App, Web 6 PMx , CO,CO2 C2H5OH, VOC, NO2 ✓ 250

incurs significantly less stress as well as physical and mental demand to perform well in the annotation task, keeping
the users’ frustration 5 folds below the maximum level.

5 DISCUSSION & LIMITATIONS

We develop an interactive, multi-device platform to identify unique pollution patterns present in low to middle-income
households. Due to the large-scale deployment of the DALTON for six months, compared to commercially available
single-point sensors that trigger frequent false alarms in short-term low-impact pollution spikes (e.g., kitchen), the
platform will isolate high-impact long-term pollution exposures (i.e., bedroom, living room, etc.) explained in Section 4.2.
This reduces the end user’s workload and improves the system’s overall utility. Furthermore, the platform accounts for
the spread of pollutants from a source (e.g., food waste, cooking, etc.) toward the other rooms of the indoor environment,
which is very common in low-income countries, leading to unintentional pollution exposure to infants and old-age
people. We can further provide actionable insights to improve air quality by analyzing these spread patterns. For instance,
as shown in Section 4.3, one should not turn on ceiling fans in nearby kitchen rooms when cooking occurs. Additionally,
an extensive user study to analyze the qualitative aspects of the DALTON platform revealed an overall satisfactory
platform highlighting the immense potential for improving daily life and promoting health and physiological comfort.

• Comparison with Commercial Devices: In Table 3, we summarize the features and market price of several
commercially available air quality monitoring devices compared to the DALTON platform. Based on the table, we can
group the devices into two categories as follows: (i) Low-cost (< $250): Majority of the low-cost devices [11, 17–19, 21]
do not stream pollutant measurements to the cloud. Instead, they only show the readings on the built-in display. Few
low-cost devices [20, 81] send data to the cloud and provide actionable insights (e.g., open windows) but suffer from
the unavailability of crucial sensors (i.e., PMx, CO, Ethanol, etc.). (ii) High-cost (> $250): On the other hand, high-cost
devices [6–8, 15] integrate more number of sensors and provide actionable insights and maintenance capabilities similar
to the DALTON platform at a price greater than $700. Thus, DALTON is a low-cost alternative that can be deployed
in scale, considering the economic condition of low to middle-income households in developing nations. DALTON
offers the best of both categories at a low-cost price range (approx. $250); it incorporates most of the crucial sensors
(research-grade, reasonably accurate), providing actionable insights and extensive remote maintenance capabilities.
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However, unlike the existing commercial devices, DALTON considers the occupant’s feedback to reason about indoor
pollution events.

• Upfront & Operating Costs: A typical low to middle-income household has three to six rooms. Considering each
room has a sensing device, the initial upfront cost of deploying the DALTON platform is within $750 to $1500. In
terms of operating cost, each device consumes 3.55 watts at maximum, as shown in Table 1. Therefore, the total power
consumption is between 0.255 kWH and 0.510 kWH, depending on the number of rooms in the household. Therefore,
the operating cost of the platform is very marginal and viable for a sustainable deployment. Moreover, the platform
requires wireless connectivity to offload data storage to the cloud, incurring no additional cost to the user.

• Limitations: Therefore, DALTON provides a viable alternative as a low-cost, scalable, and interactive pollution
monitoring platform for low to middle-income households in developing countries. However, some limitations emerged
during field deployment:

(1) The static sensing modules measure pollutants up to a certain distance. Hence, we can only monitor an envi-
ronment up to a certain fidelity with the current platform. It would be impractical for low- to middle-income
countries to deploy extensive sensing modules for improving fidelity. In our future work, we plan to integrate
wearable devices with the DALTON platform for fine-grained monitoring.

(2) The current platform is limited in querying the user and only triggers an alert when it identifies changes in
pollutants. Therefore, rely on the user to provide the causal activity via the annotation application. In the future,
we plan to use machine learning algorithms on bootstrapping data to formulate intelligent queries, understand
the pollution context, and tailor the most probable causal activities.

(3) Sensor module placement is crucial from both a sensing (correctness, alerting) and a usability (power, connectivity)
standpoint. Automatic placement of sensor modules given a layout to optimize for preventing health hazards
due to pollutants will make the solution much more compelling. The task has been left for future work.

(4) In heavy outdoor pollution-ridden areas, door and window openings exacerbate indoor pollution because outdoor
pollution contributes disproportionately. In that case, active measures like air cleaners [25, 92, 119] or air filters
in split air conditioners [94, 101] are critical. Although we have selected four diverse cities regarding pollution
exposure or dynamics, future studies on outdoor pollution-heavy cities or slums are needed.

6 CONCLUSION

This paper introduces a robust and sophisticated IoT platform named DALTON with various pollution sensors tailor-
made for precise monitoring of indoor health at scale. We depict our progression from determining optimal system
requirements for sustainable large-scale indoor deployments in developing countries to bringing the prototype to life,
merging cutting-edge technology with user-centric designs. We deployed the platform in four cities spanning over six
months with 46 participants over 30 deployment sites, each with multiple instances of the device; the platform exposed
crucial pollution hot-spots that had been neglected due to a lack of information and awareness among residents in
low to middle-income households in India. Beyond presenting mere data, the platform identifies the root cause indoor
activities behind such precarious pollution hot-spots by introducing an Android app-based user interface, facilitating
human-in-the-loop data labeling. Our comprehensive deployment and rigorous user study of the platform ensures the
technology is adaptable and scalable for various indoor scenarios, scoring an overall system usability score of 2.04.
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This work makes a substantial contribution to the existing literature on air quality monitoring by bringing attention to
distinctive pollution patterns in developing countries. Additionally, it sets the stage for the development of closed-loop
sensing solutions that prioritize user-inclusive designs.
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the field study. Moreover, we have made significant efforts to preserve the privacy of the participants while providing
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