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Part 1: Motivation & Background 
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Trends 

1. Control signaling storm in Mobile Networks: 

• Growth in the signaling traffic 50% faster than the growth in data traffic.  

• 290000 control messages/sec for 1 million users! 

• In a European network, about 2500 signals per hour were generated by a 

single application causing network outages. 

 Always-on Connectivity and Cloud Computing  

 Explosion of IoT devices (Internet of Things): Projected at 26 Billion by 2020 

 Conservation of battery: Transition to idle mode 
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2. Adoption of NFV in LTE: 

• 5G vision for RAN: explore higher frequencies (e.g., mmWave) 

• 5G vision for Core Network: Virtualization and Cloudification 

» Increased flexibility and customizability in deployment and operation 

» Reduced costs and procurement delays 



Problem Statement 
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Goal: Effective Virtualization of the LTE Control-plane 

 

  In LTE, the main control-plane entity is the MME (Mobility Management Entity) 

 The MME processes 5 times more signaling than any other entity 

 Execute MME functionality on a cluster of Virtual Machines (VMs) 

  

 Effective virtualization of MME includes: 

 Performance: Overloaded MMEs directly affect user experience: 

 Idle-Active transition delays cause connectivity delays 

Handover delays effect TCP performance 

Cost-effectiveness: Control-signaling does not generate direct revenue: 

Over-provisioning: Under-utilized VMs 

Under-provisioning: Processing delays 

 



Background: LTE Networks 
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MME Virtualization Requirements 

 

 Elasticity of compute resources: 

– VMs are scaled-in and out dynamically with expected load 

– Proactive approaches to ensure efficient load balancing 

• Lower processing delays for a given set of VMs OR 

• Reduced number of VMs to meet specific delay requirements 

 

 Scale Of Operation: 

– Typically, number of active devices (that generate signaling) << 

total number of registered devices 

– Expected to be more pronounced with IoT devices 

 

 3GPP Compatibility: 

– Ensures easy and incremental deployment 
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Part 2: State of the Art 
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Today’s MME Implementations 

 Current implementations are ill-suited for virtualized 

MMEs: 

– hardware-based MME architecture 

– Porting code to VMs is highly inefficient 

 

 Fundamental Problem: 

– Static Assignment of devices to MMEs 

– Persistent sessions per device with Serving gateways, 

HSSs and eNodeBs/devices 
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Today’s MME Implementations 
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 Once registered, a device is persistently assigned to an MME  

– The device, its assigned Serving Gateway (S-GW) and the HSS store 

the MME address and; 

– Subsequent control messages from the device, SGW and HSS are 

sent to the same MME. 
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Today’s MME Implementations 
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Today’s MME Implementations 
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Limitations of Current Implementations 

Static Configurations result in inefficiency and inflexibility 

1. Elasticity: Only new (unregistered) devices can be assigned 

to new VMs 

2. Load-balancing: Re-assignment of device to a new MME 

requires control messages to the device, SGW and HSS 
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Limitations of Current Implementations 
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3. Geo-multiplexing across DCs: Inflexibility to perform 

fine-grained load balancing across MME VMs in different 

DCs 

 



Part 3: Design Overview 
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Design Architecture 
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Decouple standard interfaces from MME Device management: 
1. SLB: Load-balancers that forward requests from devices, SGW and HSS to the 

appropriate MMP VM 

2. MMP: MME Processing entitles that store device state and process device 

requests.  

–  MMP VMs exchange device states to ensure re-assignment during scaling 

procedures 
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Design Considerations 

How do we dynamically (re)-assign devices to MMP 

VMs as the VMs are scaled-in and out?  

 Scalable with the expected surge in the number of devices 

 Ensure efficient load balancing without over-provisioning 

 SLB/Routing bottlenecks: 

– Multiple SLB VMs may have to route the same device 

requests 

– Each interface contains different ids or keys for routing 

• SLB VMs will need to maintain separate table to route 

the requests from each interface 
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Design Considerations 
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Design Considerations 
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 Apply it within the context of virtual MMEs 

– Coupled provisioning for computation of device 

requests and storage of device state 

– Replication of device state is costly, requiring tight 

synchronization 

 

 

Our Approach: SCALE 

 Leverage concept from distributed data-stores: 

– Consistent Hashing (e.g., Amazon DynamoDB and 

Facebook Cassandara) 

• Provably practical at scale 

– Replicate device state across multiple MMP VMs 

•  fine-grained load balancing 
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SCALE Components 
 VM Provisioning: Every hour(s), decides when to instantiate a new VM 

(scale out) or bring down an existing VM(scale in) 

 State Partitioning: (Re)-distribution of state across existing MMP VMs 

State Replication: Copies device state across MMP VMs to ensure 

efficient load-balancing 
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Part 4(a): Design within a single DC 
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How is consistent hashing applied? 

Scalable, decentralized (re)-

assignment of devices across VMs of 

a single DC 

– MMPs are placed randomly on 

a hash ring 

– A device is assigned to a VM 

based on the hash value of its 

IMSI 

– SLB VMs only maintain the 

location of the currently active 

MMP VMs on the ring 
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Scale-out procedure (Scale-in is similar) 
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Proactive Replication: Efficient Load 
Balancing 

1. Each MMP VM is placed as 

multiple tokens on the ring 

2. The device state assigned to a 

token of the MMP VM, is 

replicated to the adjacent token of 

another MMP VM 

 

Leveraging hashing for replication 

ensures no additional overhead 

for SLB VMs: 

 In real-time, the SLB VMs 

forward the request of a device 

to the least loaded MMP VM 
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We derived an analytical model and 

performed extensive simulations to 

show that: 

Our procedure of consistent hashing + 

replication results in efficient load-

balancing with only 2 copies of device 

state  

 

L1-L4: Increasing levels of Load 

Skewness across the MMP VMs 
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Part 4(b): Design across DCs 
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Proactive Replication Across DCs 

 SCALE replicates a device state in an additional MMP VM in 

the local DC 

 SCALE also replicates the state of certain devices to MMP 

VMs at remote DCs 

– Enables fine-grained load balancing across DCs 

– SCALE replicates devices at remote DC to minimize latency 
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Proactive Replication Across DCs 

 Selection of Device: Medium activity pattern 

– Highly active devices are only assigned at the local DC to 

reduce average latencies 

– Replicating highly dormant devices  to remote DC does not 

help load balancing 

 Selection of remote DC: Selection is probabilistic 

based on the metric ‘p’:  

 

 

 

 In real-time, the SLB VM always forwards the request 

of a device to the least loaded MMP VM in the local DC 

– If overloaded, the local MMP VM forwards the request to the 

MMP VM in the remote DC 
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Part 5: Prototype & Evaluation 
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 The OpenEPC testbed is a C (linux) based Release 9 LTE network 

 SCALE is implemented within the openEPC codebase 

 Implementation effort includes splitting the MME into SLB and MMPs 
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Benchmarking Experiments 

 Expt1 SLB Overhead: Current prototype supports 5 

MMP VMs for a single SLB VM at full load 

 

 Expt2 Replication Overhead: The overhead of 

synchronizing device state (copying) is less than 8% 
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Efficacy of SCALE compared to current 
implementations 
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 SCALE performs proactive replication vs reactive 

replication in current MME systems: 

– (a) SCALE ensures lower control-plane processing delays 

– (b) & (c) SCALE ensures lower CPU loads since it does not 

involve per-device overheads to re-assign devices 



Conclusion 

 Current MME implementations: 

– Ill-suited for virtualized environments 

– Rely on over-provisioning to avoid overload 

– Will not scale to next-generation of IoT-based mobile access 

 

 SCALE effectively applies concepts from distributed 

systems to virtual MME systems: 

– Decoupling architecture enables elasticity 

– Consistent hashing ensures scalable re-distribution of devices 

– Proactive replication strategy ensures efficient load-balancing 
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