
Encoding, Fast and Slow:
Low-Latency Video Processing Using
Thousands of Tiny Threads

Sadjad Fouladi¹, Riad S. Wahby¹, Brennan Shacklett¹,

Karthikeyan Vasuki Balasubramaniam², William Zeng¹,

Rahul Bhalerao², Anirudh Sivaraman³, George Porter², Keith Winstein¹

https://ex.camera

¹Stanford University, ²UC San Diego, ³MIT

https://ex.camera

Outline

• Vision & Goals

• mu: Supercomputing as a Service

• Fine-grained Parallel Video Encoding

• Evaluation

• Conclusion & Future Work

2

The challenges

• Low-latency video processing would need thousands of threads, running in
parallel, with instant startup.

• However, the finer-grained the parallelism, the worse the compression
efficiency.

9

Enter ExCamera

• We made two contributions:

• Framework to run 5,000-way parallel jobs with IPC on a commercial
“cloud function” service.

• Purely functional video codec for massive fine-grained parallelism.

• We call the whole system ExCamera.

10

Outline

• Vision & Goals

• mu: Supercomputing as a Service

• Fine-grained Parallel Video Encoding

• Evaluation

• Conclusion & Future Work

11

Where to find thousands of threads?

• IaaS services provide virtual machines (e.g. EC2, Azure, GCE):
• Thousands of threads
• Arbitrary Linux executables
! Minute-scale startup time (OS has to boot up, ...)
! High minimum cost  

(60 mins EC2, 10 mins GCE)

12

3,600 threads on EC2 for one second → >$20

Cloud function services have (as yet) unrealized power

• AWS Lambda, Google Cloud Functions

• Intended for event handlers and Web microservices, but...

• Features:
✔ Thousands of threads
✔ Arbitrary Linux executables
✔ Sub-second startup
✔ Sub-second billing

13

3,600 threads for one second → 10¢

mu, supercomputing as a service

• We built mu, a library for designing and deploying general-purpose parallel
computations on a commercial “cloud function” service.

• The system starts up thousands of threads in seconds and manages inter-
thread communication.

• mu is open-source software: https://github.com/excamera/mu

14

https://github.com/excamera/mu

Outline

• Vision & Goals

• mu: Supercomputing as a Service

• Fine-grained Parallel Video Encoding

• Evaluation

• Conclusion & Future Work

17

Now we have the threads, but...

• With the existing encoders, the finer-grained the parallelism, the worse the
compression efficiency.

18

Video Codec

• A piece of software or hardware that compresses and decompresses digital
video.

19

1011000101101010001
0001111111011001110
0110011101110011001
0010000...001001101
0010011011011011010
1111101001100101000
0010011011011011010

Encoder Decoder

How video compression works

• Exploit the temporal redundancy in adjacent images.

• Store the first image on its entirety: a key frame.

• For other images, only store a "diff" with the previous images: an interframe.

20

In a 4K video @15Mbps, a key frame is ~1 MB, but an interframe is ~25 KB.

Existing video codecs only expose a simple interface

encode([!,!,...,!]) → keyframe + interframe[2:n]

decode(keyframe + interframe[2:n]) → [!,!,...,!]

21

compressed video

encode(i[1:200]) → keyframe1 + interframe[2:200]

[thread 01] encode(i[1:10]) → kf1 + if[2:10]
[thread 02] encode(i[11:20]) → kf11 + if[12:20]
[thread 03] encode(i[21:30]) → kf21 + if[22:30]
 ⠇
[thread 20] encode(i[191:200]) → kf191 + if[192:200]

Traditional parallel video encoding is limited

22
finer-grained parallelism ⇒ more key frames ⇒ worse compression efficiency

parallel ↓

serial ↓

+1 MB

+1 MB

+1 MB

We need a way to start encoding mid-stream

• Start encoding mid-stream needs access to intermediate computations.

• Traditional video codecs do not expose this information.

• We formulated this internal information and we made it explicit: the “state”.

23

The decoder is an automaton

24

state
interframe

state statestate
key frame interframe interframe

What we built: a video codec in explicit state-passing style

• VP8 decoder with no inner state:

decode(state, frame) → (state′, image)

• VP8 encoder: resume from specified state

encode(state, image) → interframe

• Adapt a frame to a different source state

rebase(state, image, interframe) → interframe′

25

Putting it all together: ExCamera

• Divide the video into tiny chunks:

• [Parallel] encode tiny independent chunks.

• [Serial] rebase the chunks together and remove extra keyframes.

26

1. [Parallel] Download a tiny chunk of raw video

27

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

2. [Parallel] vpxenc → keyframe, interframe[2:n]

28

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

Google's VP8 encoder 
encode(img[1:n]) → keyframe + interframe[2:n]

3. [Parallel] decode → state ↝ next thread

29

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

Our explicit-state style decoder 
decode(state, frame) → (state′, image)

4. [Parallel] last thread’s state ↝ encode

30

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

Our explicit-state style encoder  
encode(state, image) → interframe

5. [Serial] last thread’s state ↝ rebase → state ↝ next thread

31

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

Adapt a frame to a different source state  
rebase(state, image, interframe) → interframe′

5. [Serial] last thread’s state ↝ rebase → state ↝ next thread

32

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

Adapt a frame to a different source state  
rebase(state, image, interframe) → interframe′

6. [Parallel] Upload finished video

33

1 61115

thread 1

7 1211111

thread 2

13 1811117

thread 3

19 2411123

thread 4

ExCamera[6, 16] 2.6 mins

14.8-minute 4K Video @20dB

vpxenc Single-Threaded 453 mins

vpxenc Multi-Threaded 149 mins

YouTube (H.264) 37 mins

Takeaways

• Low-latency video processing

• Two major contributions:

• Framework to run 5,000-way parallel jobs with IPC on a commercial
“cloud function” service.

• Purely functional video codec for massive fine-grained parallelism.

• 56× faster than existing encoder, for <$6.

44https://ex.camera | excamera@cs.stanford.edu

https://ex.camera

