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The challenges

Low-latency video processing would need thousands of threads, running in
parallel, with instant startup.

However, the finer-grained the parallelism, the worse the compression
efficiency.



Enter ExCamera

- We made two contributions;

Framework to run 5,000-way parallel jobs with [PC on a commercial
“‘cloud function” service.

Purely functional video codec for massive fine-grained parallelism.

-+ We call the whole system ExCamera.
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* Mu: Supercomputing as a Service
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Where to find thousands of threads?

- |laaS services provide virtual machines (e.g. EC2, Azure, GCE):
Thousands of threads
Arbitrary Linux executables
¥ Minute-scale startup time (OS has to boot up, ...)

N E'A?f,‘nﬂ'é‘z'r?f nTnf §§,§) 3,600 threads on EC2 for one second — >$20
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Cloud function services have (as yet) unrealized power

- AWS Lambda, Google Cloud Functions

- Intended for event handlers and \Web microservices, but...

+ Features:
v Thousands of threads
v Arbitrary Linux executables
v Sub-second startup

STVl eEIcTelolploNellliglel® 3,600 threads for one second — 10¢
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mu, supercomputing as a service

- We built mu, a library for designing and deploying general-purpose parallel
computations on a commercial “cloud function” service.

+ The system starts up thousands of threads in seconds and manages inter-
thread communication.

* MU IS Open-source software: https.//qithub.com/excamera/mu
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https://github.com/excamera/mu
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+ FIne-grained Parallel Video Encoding
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Now we have the threads, but...

- With the existing encoders, the finer-grained the parallelism, the worse the
compression efficiency.
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Video Codec

A plece of software or hardware that compresses and decompresses digital
video.
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How video compression works
Exploit the temporal redundancy in adjacent images.

+ Store the first image on its entirety: a key frame.

For other images, only store a "diff* with the previous images: an interframe.
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Existing video codecs only expose a simple interface

encode([M,K&,...,H]) — keyframe + interframe[2:n]

decode(keyframe + interframe[2:n]) — [K,&,... K]



Traditional parallel video encoding is limited

serial |

encode(i[1:200]) — keyframe: + interframe[2:200]

[thread 01]
[thread 02]
[thread 03]

[thread 20]

parallel |

encode(i[1:10]) — kfi + if[2:10]
encode(i[11:20])  —[kfu "y if[12:20]
encode(i[21:30]) — kfziﬂ‘i!E if[22:30]

+1MB

encode(1[191:200]) —|kfiyr,+ 1T[192:200]

finer-grained parallelism = more key frames = worse compression efficiency
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We need a way to start encoding mid-stream

- Start encoding mid-stream needs access to intermediate computations.
- [raditional video codecs do not expose this information.

- We formulated this internal information and we made it explicit: the “state”.
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The decoder Is an automaton
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What we built: a video codec in explicit state-passing style

- VP8 decoder with no inner state:

decode(state, frame) — (state’, image)

- VP8 encoder: resume from specified state

encode(state, image) — interframe

+ Adapt a frame to a different source state

rebase(state, image, interframe) — interframe’
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Putting it all together: ExCamera

» Divide the video into tiny chunks:
- [Parallel] encode tiny independent chunks.

- [Serial] rebase the chunks together and remove extra keyframes.
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“arallel] Download a tiny chunk of raw video

[ thread 1 ] [ thread 2 ] [ thread 3 ]
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“arallel] vpxenc - keyframe, interframe|2:n]

[ thread 1 ] [ thread 2 ] [ thread 3 ] [ thread 4 ]
(E3mE3 ) ) t3) (7 o) (lllz)
—~0-0-0 | =0-0-0 | =0-0-0 | =0-0-0

Google's VP8 encoder
encode(img[l:n]) - keyframe + interframe[2:n]
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Parallel] decode - state ~ next thread

[ thread 1 ] [ thread 2 ] [ thread 3 ] [
(E3mE3 ) ) t3) (7
N N N

Our explicit-state style decoder
decode(state, frame) - (state’, 1image)

thread 4 ]
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“arallel| last thread’s state ~ encode

[ thread 1 ] : [ thread 2 ] : [ thread 3
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Our explicit-state style encoder
encode(state, i1image) - 1interframe

thread 4 ]
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5. [Serial] last thread’s state ~ rebase - state —~ next thread

O_

[ thread 1 ] : [ thread 2 ] : [ thread 3 ] : [ thread 4 ]

| | |

D @ 0O B @ 0@
| | |
| | |

0~ 0~0— : :
| | |
—0-0—0—k : - O=0
|
I
|
|
|
|
|

Adapt a frame to a different source state
rebase(state, image, interframe) - interframe’
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5. [Serial] last thread’s state ~ rebase - state —~ next thread

[ thread 1 ] [ thread 2 ] : [ thread 3 ] [ thread 4 ]
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Adapt a frame to a different source state
rebase(state, image, interframe) - interframe’
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. |Parallel] Upload finished video

[ thread 1 ] [ thread 2 ] : [ thread 3 ] [ thread 4 ]
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14.8-Mminu

e 4K Video @20dB

voxenc Single-Threaded 453 mins

voxenc Mult-IThreadea 149 mins

Youlube (H.264) 37 mins

—xCamera|o,

10 2.6 mins




Takeaways
L ow-latency video processing
- Iwo major contributions:

Framework to run 5,000-way parallel jobs with [PC on a commercial
“cloud function” service.

Purely functional video codec for massive fine-grained parallelism.

56x faster than existing encoder, for <3$6.

https://ex.camera | excamera@cs.stanford.edu
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