Encoding, Fast and Slow:

Low-Latency Video Processing Using
Thousands of Tiny Threads

Sadjad Fouladi', Riad S. Wahby', Brennan Shacklett?,
Karthikeyan Vasuki Balasubramaniam?, William Zeng?,
Rahul Bhalerao?, Anirudh Sivaraman3, George Porter?, Keith Winstein’

1Stanford University, 2UC San Diego, SMIT

https://ex.camera

https://ex.camera

Outline

- Vision & Goals

The challenges

Low-latency video processing would need thousands of threads, running in
parallel, with instant startup.

However, the finer-grained the parallelism, the worse the compression
efficiency.

Enter ExCamera

- We made two contributions;

Framework to run 5,000-way parallel jobs with [PC on a commercial
“‘cloud function” service.

Purely functional video codec for massive fine-grained parallelism.

-+ We call the whole system ExCamera.

10

Outline

* Mu: Supercomputing as a Service

11

Where to find thousands of threads?

- |laaS services provide virtual machines (e.g. EC2, Azure, GCE):
Thousands of threads
Arbitrary Linux executables
¥ Minute-scale startup time (OS has to boot up, ...)

N E'A?f,‘nﬂ'é‘z'r?f nTnf §§,§) 3,600 threads on EC2 for one second — >$20

12

Cloud function services have (as yet) unrealized power

- AWS Lambda, Google Cloud Functions

- Intended for event handlers and \Web microservices, but...

+ Features:
v Thousands of threads
v Arbitrary Linux executables
v Sub-second startup

STVl eEIcTelolploNellliglel® 3,600 threads for one second — 10¢

13

mu, supercomputing as a service

- We built mu, a library for designing and deploying general-purpose parallel
computations on a commercial “cloud function” service.

+ The system starts up thousands of threads in seconds and manages inter-
thread communication.

* MU IS Open-source software: https.//qithub.com/excamera/mu

14

https://github.com/excamera/mu

Outline

+ FIne-grained Parallel Video Encoding

17

Now we have the threads, but...

- With the existing encoders, the finer-grained the parallelism, the worse the
compression efficiency.

18

Video Codec

A plece of software or hardware that compresses and decompresses digital
video.

1011000101101010001
0001111111011001110
0110011101110011001
0010000...001001101
0010011011011011010
1111101001100101000
0010011011011011010

@&l ey

19

How video compression works
Exploit the temporal redundancy in adjacent images.

+ Store the first image on its entirety: a key frame.

For other images, only store a "diff* with the previous images: an interframe.

20

Existing video codecs only expose a simple interface

encode([M,K&,...,H]) — keyframe + interframe[2:n]

decode(keyframe + interframe[2:n]) — [K,&,... K]

Traditional parallel video encoding is limited

serial |

encode(i[1:200]) — keyframe: + interframe[2:200]

[thread 01]
[thread 02]
[thread 03]

[thread 20]

parallel |

encode(i[1:10]) — kfi + if[2:10]
encode(i[11:20]) —[kfu "y if[12:20]
encode(i[21:30]) — kfziﬂ‘i!E if[22:30]

+1MB

encode(1[191:200]) —|kfiyr,+ 1T[192:200]

finer-grained parallelism = more key frames = worse compression efficiency

22

We need a way to start encoding mid-stream

- Start encoding mid-stream needs access to intermediate computations.
- [raditional video codecs do not expose this information.

- We formulated this internal information and we made it explicit: the “state”.

23

a5

The decoder Is an automaton

state

a5

state

-5

A A A A
[/ J /
4 / / 4
, . , . , .) .
key frame iInterframe iInterframe iInterframe

state

- a5

state

24

What we built: a video codec in explicit state-passing style

- VP8 decoder with no inner state:

decode(state, frame) — (state’, image)

- VP8 encoder: resume from specified state

encode(state, image) — interframe

+ Adapt a frame to a different source state

rebase(state, image, interframe) — interframe’

25

Putting it all together: ExCamera

» Divide the video into tiny chunks:
- [Parallel] encode tiny independent chunks.

- [Serial] rebase the chunks together and remove extra keyframes.

26

“arallel] Download a tiny chunk of raw video

[thread 1] [thread 2] [thread 3]

) (@

® [@

O @ ©

|

thread 4

|

o) |

)

27

“arallel] vpxenc - keyframe, interframe|2:n]

[thread 1] [thread 2] [thread 3] [thread 4]
(E3mE3)) t3) (7 o) (lllz)
—~0-0-0 | =0-0-0 | =0-0-0 | =0-0-0

Google's VP8 encoder
encode(img[l:n]) - keyframe + interframe[2:n]

28

Parallel] decode - state ~ next thread

[thread 1] [thread 2] [thread 3] [
(E3mE3)) t3) (7
N N N

Our explicit-state style decoder
decode(state, frame) - (state’, 1image)

thread 4]

@ [@

—~0-O—~0)_

29

“arallel| last thread’s state ~ encode

[thread 1] : [thread 2] : [thread 3

| |

IO @O0 @ 0@ E
| |
| |

(O I OT
| |
000 |\ ~0-0-0
:
|
|
|
|
|

Our explicit-state style encoder
encode(state, i1image) - 1interframe

thread 4]

)

30

5. [Serial] last thread’s state ~ rebase - state —~ next thread

O_

[thread 1] : [thread 2] : [thread 3] : [thread 4]

| | |

D @ 0O B @ 0@
| | |
| | |

0~ 0~0— : :
| | |
—0-0—0—k : - O=0
|
I
|
|
|
|
|

Adapt a frame to a different source state
rebase(state, image, interframe) - interframe’

31

5. [Serial] last thread’s state ~ rebase - state —~ next thread

[thread 1] [thread 2] : [thread 3] [thread 4]

|

[© 0 @ @ ® @
|
|

—O I
|
|

Adapt a frame to a different source state
rebase(state, image, interframe) - interframe’

32

. |Parallel] Upload finished video

[thread 1] [thread 2] : [thread 3] [thread 4]

|

(BmD) W) : te) (7 S(E
|
|

—O I
|
|
|

|
I
O O—O
|
I
I

I
: _ ,O

14.8-Mminu

e 4K Video @20dB

voxenc Single-Threaded 453 mins

voxenc Mult-IThreadea 149 mins

Youlube (H.264) 37 mins

—xCamera|o,

10 2.6 mins

Takeaways
L ow-latency video processing
- Iwo major contributions:

Framework to run 5,000-way parallel jobs with [PC on a commercial
“cloud function” service.

Purely functional video codec for massive fine-grained parallelism.

56x faster than existing encoder, for <3$6.

https://ex.camera | excamera@cs.stanford.edu

44

https://ex.camera

