Understanding and Modeling of WiFi Signal Based Human Activity Recognition

Wei Wang † , Alex X. Liu $^{\dagger \ddagger}$, Muhammad Shahzad ‡ ,Kang Ling † , Sanglu Lu †

[†]Nanjing University, [‡]Michigan State University

September 8, 2015

Motivation

 WiFi signals are available almost everywhere and they are able to monitor surrounding activities.

Motivation

 WiFi signals are available almost everywhere and they are able to monitor surrounding activities.

WiFi based Activity Recognition

Using commercial WiFi devices to recognize human activities.

- √ Work in dark
- √ Better coverage
- √ Less intrusive to user privacy
- √ No need to wear sensors

Problem Statment

WiFi based Activity Recognition

Using commercial WiFi devices to recognize human activities.

- √ Work in dark
- √ Better coverage
- √ Less intrusive to user privacy
- ✓ No need to wear sensors

Problem Statment

WiFi based Activity Recognition

Using commercial WiFi devices to recognize human activities.

- √ Work in dark
- Better coverage
- √ Less intrusive to user privacy
- √ No need to wear sensors

WiFi based Activity Recognition

Using commercial WiFi devices to recognize human activities.

- ✓ Work in dark
- Better coverage
- Less intrusive to user privacy

Problem Statment

WiFi based Activity Recognition

Using commercial WiFi devices to recognize human activities.

- √ Work in dark
- Better coverage
- √ Less intrusive to user privacy
- ✓ No need to wear sensors

- Measurement from commercial devices are noisy and have unpredictable carrier frequency offsets
- Needs robust and accurate models to extract useful information from measurements

Key observations

- Multipaths contain both static component and dynamic component
- Each path has different phase
- Phases determine the amplitude of the combined signal

Interpreting CSI amplitude

- Phases of paths are determined by path length
- Path length change of one wavelength gives phase change of 2π
- Frequency of amplitude change can be converted to movement speed

How accurate is it?

• Wave length \rightarrow 5 \sim 6cm in 5 GHz band

CSI amplitude changes are close to sinusoids

How accurate is it?

• Wave length \rightarrow 5 \sim 6cm in 5 GHz band

CSI amplitude changes are close to sinusoids

Average distance measurement error of 2.86 cm

How robust is it?

- Robust over different multipath conditions and movement directions
- Linear combination of multipath do not change frequency

Speed distribution of different activities in different environments

Activities are characterized by

- Movement speeds
- Change in movement speeds
- Speeds of different body components

- Use time-frequency analysis to extract features
- Use HMM to characterize the state transitions of movements

Build one HMM model for each activity

- Determine states based on observations in waveform patterns
- State durations and relationships are captured by transition probabilities

System Architecture

Data Collection

$N \times M \times 30$ CSI streams

Correlation of CSI on different subcarriers

- Subcarriers only differ slightly in wavelength
- Subcarriers have the same set of paths, with different phases

Correlation in CSI Streams

Noise Reduction

Combines $N \times M \times 30$ subcarriers using PCA to detect timevarying correlations in signal

Real-time Recognition

- Activity detection
 - Use both the signal variance and correlation to detect presence of activities
- Feature extraction
 - Time-frequency analysis (DWT)
- HMM model building
 - Eight activities
 Walking, running, falling, brushing teeth, sitting down, opening refrigerator, pushing, boxing
 - More than 1,400 samples from 25 persons as the training set

Evaluation Setup

- Commercial hardware with no modification.
 - Transmitter: NetGEAR JR6100 Wireless Router
 - Receiver: Thinkpad X200 with Intel 5300 NIC
- A single communicating pair is enough to monitor 450 m² open area
- Measurement on UDP packets sent between the pair
- Sampling rate 2,500 samples per second

Evaluation Results

Activity recognized

		7.00.11.ty 1.000g200								
		R	W	S	0	F	В	Р	Т	E
True activity	Running	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Walking	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Sitting	0.000	0.000	0.947	0.030	0.011	0.000	0.012	0.000	0.000
	Opening	0.000	0.005	0.150	0.803	0.042	0.000	0.000	0.000	0.000
	Falling	0.000	0.010	0.041	0.010	0.939	0.000	0.000	0.000	0.000
	Boxing	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000
	Pushing	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000
	Brushing	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000
	Empty	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000

- Ten-fold validation accuracy: 96.5%
- Detects human movements at 14 meters
- Real-time recognition on laptops
- Packet sending rate can be as low as 800 frames per second

Evaluation on Robustness

- Models are robust to environment changes
- Train once, apply to different scenarios
- Training use database collected in lab with different users
- Test in with users not in the training set
 - Open lobby
 - Apartment (NLOS)
 - Small office

Evaluation on Robustness

 Consistent performance in unknown environments, with more than 80% average accuracy

- CSI measurements contains fine-grained movement informations
- CSI-Speed model quantifies the correlation between CSI value dynamics and human movement speeds
- CSI-Activity model quantifies the correlation between the movement speeds of different human body parts and a specific human activity
- Our models are robust to environment changes

Thank you! Questions?