Introduction to GPU Programming

Mubashir Adnan Qureshi

http://www.ncsa.illinois.edu/People/kindr/projects/hpca/files/singapore_p1.pdf

http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU_Computing_Webinars_CUDA_Memory_Optimization.pdf

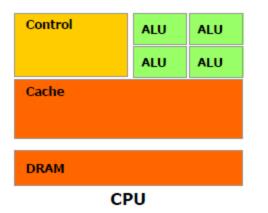
Tutorial Goals

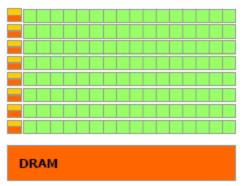
- NVIDIA GPU architecture
- NVIDIA GPU application development flow
- Write and run simple NVIDIA GPU kernels in CUDA
- Be aware of performance limiting factors and understand performance tuning strategies

Introduction

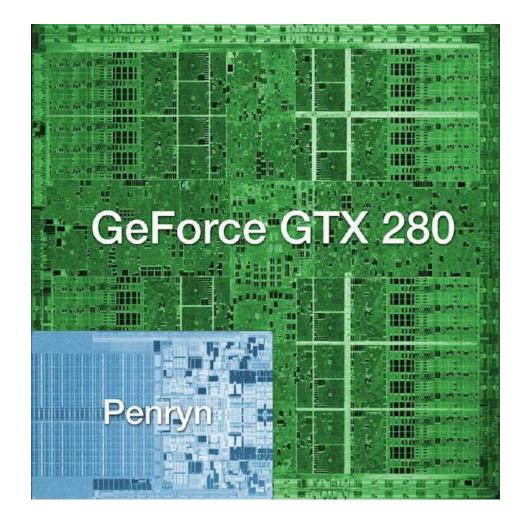
- Why use Graphics Processing Units (GPUs) for general-purpose computing
- Modern GPU architecture
 NVIDIA
- GPU programming overview
 - CUDA C
 - OpenCL

GPU vs. CPU Silicon Use



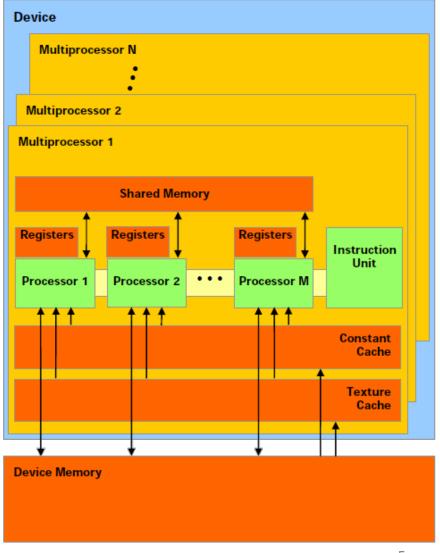


GPU

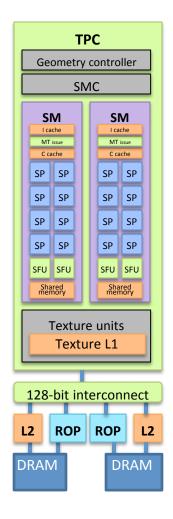


NVIDIA GPU Architecture

- N multiprocessors called SMs
 - Each has M cores called SPs
- SIMD
 - Same instruction executed on SPs
- Device memory shared across all SMs

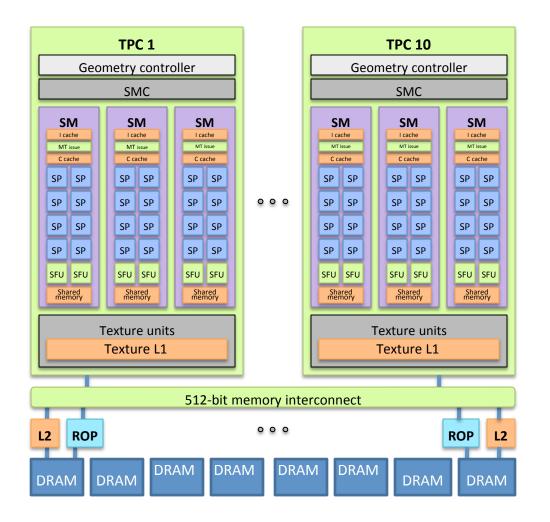


NVIDIA GeForce9400M G GPU



- 16 streaming processors arranged as 2 streaming multiprocessors
- At 0.8 GHz this provides
 - 54 GFLOPS in singleprecision (SP)
- 128-bit interface to offchip GDDR3 memory
 - 21 GB/s bandwidth

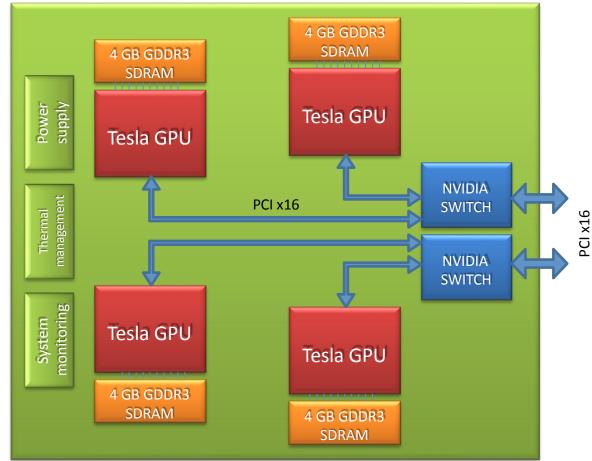
NVIDIA Tesla C1060 GPU



- 240 streaming processors arranged as 30 streaming multiprocessors
- At 1.3 GHz this provides
 - 1 TFLOPS SP
 - 86.4 GFLOPS DP
- 512-bit interface to off-chip GDDR3 memory
 - 102 GB/s bandwidth

NVIDIA Tesla S1070 Computing Server

• 4 T10 GPUs



GPU Use/Programming

- GPU libraries
 - NVIDIA's CUDA BLAS and FFT libraries
 - Many 3rd party libraries
- Low abstraction lightweight GPU programming toolkits
 - CUDA C
 - OpenCL

nvcc

- Any source file containing CUDA C language extensions must be compiled with nvcc
- nvcc is a compiler driver that invokes many other tools to accomplish the job
- Basic nvcc usage
 - nvcc <filename>.cu [-o <executable>]
 - Builds release mode
 - nvcc -deviceemu <filename>.cu
 - Builds device emulation mode (all code runs on CPU)
 - nvprof <executable>
 - Profiles the code

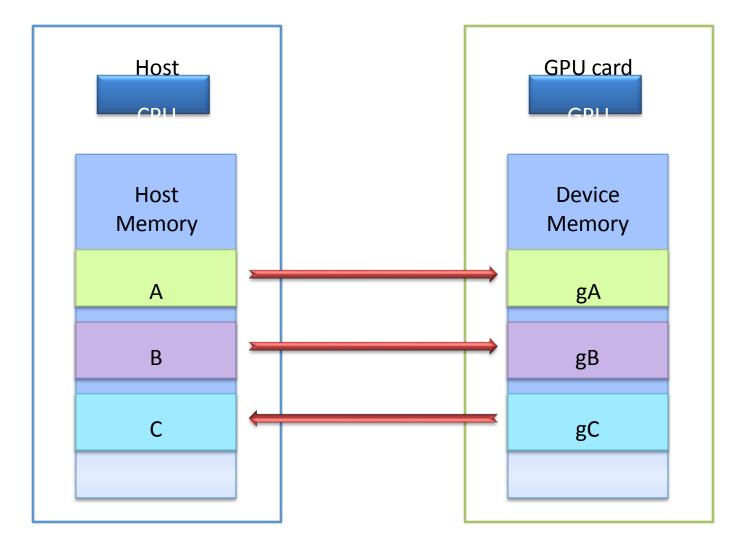
Anatomy of a GPU Application

- Host side
- Device side

Reference CPU Version



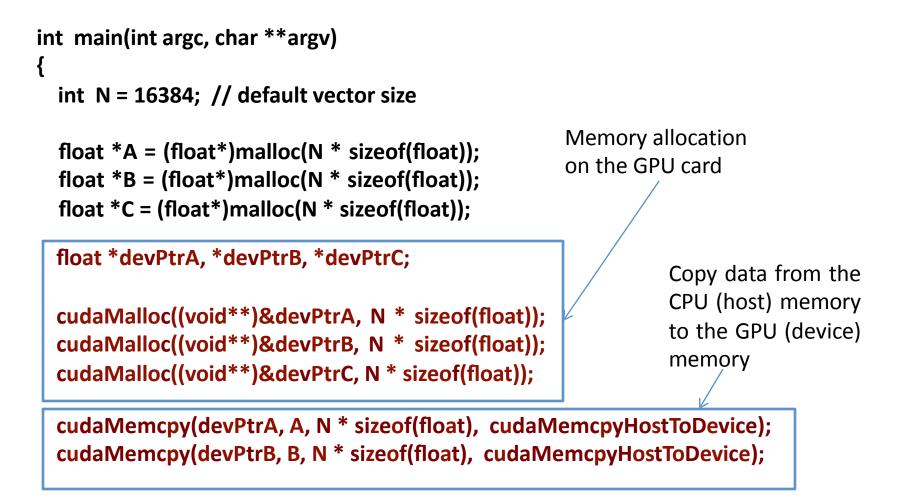
Adding GPU support



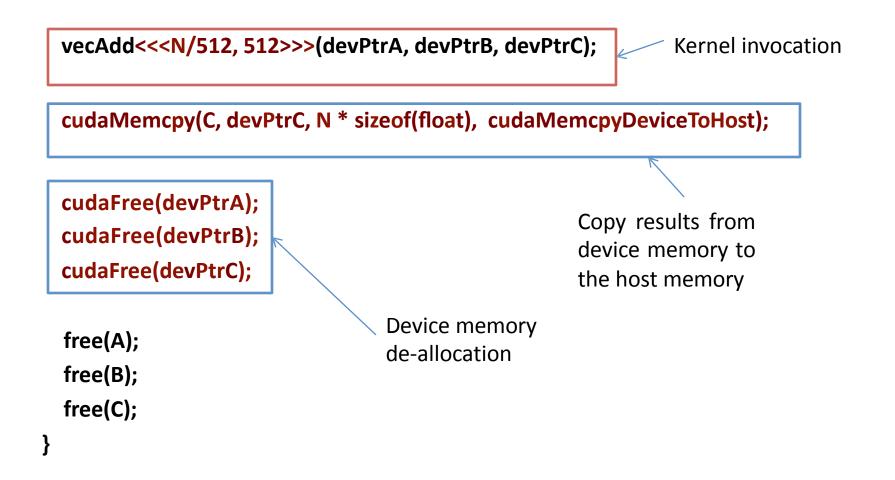
Memory Spaces

- CPU and GPU have separate memory spaces
 - Data is moved across PCIe bus
 - Use functions to allocate/set/copy memory on GPU
- Host (CPU) manages device (GPU) memory
 - cudaMalloc(void** pointer, size_t nbytes)
 - cudaFree(void* pointer)
 - cudaMemcpy(void* dst, void* src, size_t nbytes, enum cudaMemcpyKind direction);
 - returns after the copy is complete
 - blocks CPU thread until all bytes have been copied
 - does not start copying until previous CUDA calls complete
 - enum cudaMemcpyKind
 - cudaMemcpyHostToDevice
 - cudaMemcpyDeviceToHost
 - cudaMemcpyDeviceToDevice

Adding GPU support



Adding GPU support



GPU Kernel

CPU version

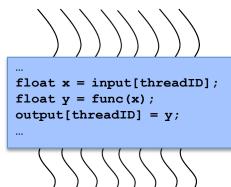
```
void vecAdd(int N, float* A, float* B, float* C)
{
    for (int i = 0; i < N; i++)
        C[i] = A[i] + B[i];
}</pre>
```

GPU version

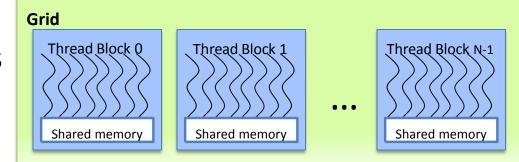
```
__global__ void vecAdd(float* A, float* B, float* C)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    C[i] = A[i] + B[i];
}
```

CUDA Programming Model

- A CUDA kernel is executed by an array of threads
 - All threads run the same code (SIMD)
 - Each thread has an ID that it uses to compute memory addresses and make control decisions



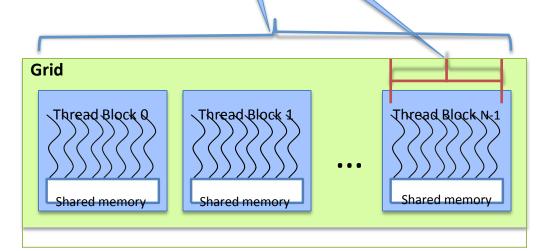
- Threads are arranged as a grid of thread blocks
 - Threads within
 a block have access
 to a segment of
 shared memory



Kernel Invocation Syntax

grid & thread block dimensionality

vecAdd<<<<mark>32</mark>, <mark>512</mark>>>>(devPtrA, devPtrB, devPtrC);



int i = blockIdx.x * blockDim.x + threadIdx.x;

block ID within a grid

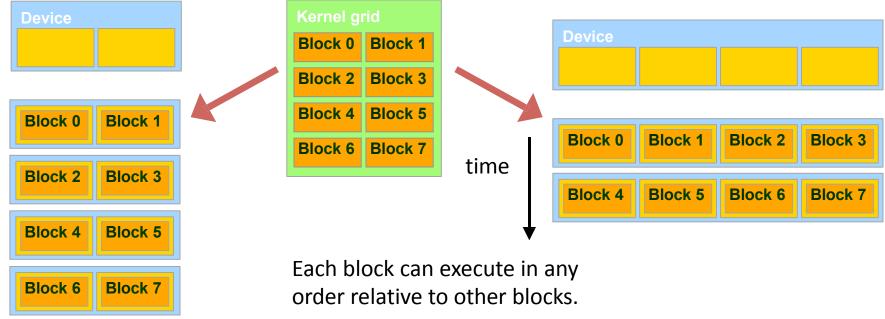
number of threads per block

thread ID within a thread block

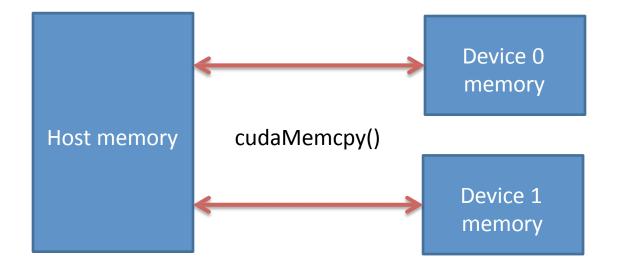
Mapping Threads to the Hardware

- Blocks of threads are transparently assigned to SMs
 - A block of threads executes on one SM & does not migrate
 - Several blocks can reside concurrently on one SM

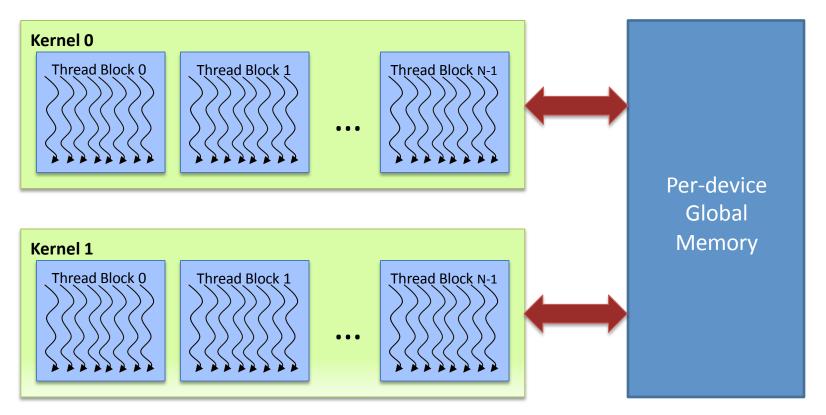
- Blocks must be independent
 - Any possible interleaving of blocks should be valid
 - Blocks may coordinate but not synchronize
 - Thread blocks can run in any order



- Global (device) memory
 - Accessible by all threads as well as host (CPU)
 - Data lifetime is from allocation to deallocation

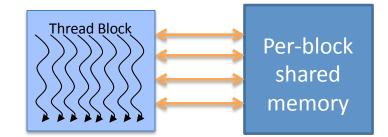


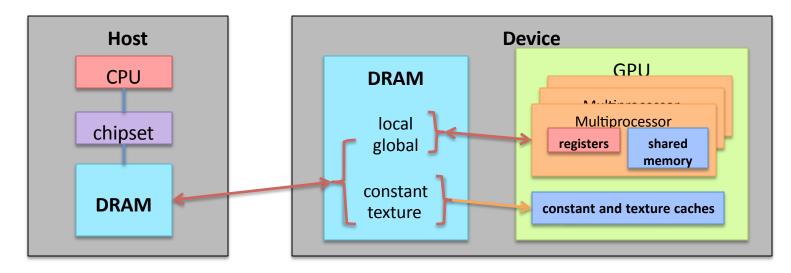
• Global (device) memory



- Local storage
 - Each thread has own local storage
 - Mostly registers (managed by the compiler)
 - Data lifetime = thread lifetime

- Shared memory
 - Each thread block has own shared memory
 - Accessible only by threads within that block
 - Data lifetime = block lifetime





Memory	Location	Cached	Access	Scope	Lifetime
Register	On-chip	N/A	R/W	One thread	Thread
Local	Off-chip	No	R/W	One thread	Thread
Shared	On-chip	N/A	R/W	All threads in a block	Block
Global	Off-chip	No	R/W	All threads + host	Application
Constant	Off-chip	Yes	R	All threads + host	Application
Texture	Off-chip	Yes	R	All threads + host	Application

GPU Kernel

CPU version

```
void vecAdd(int N, float* A, float* B, float* C)
{
    for (int i = 0; i < N; i++)
        C[i] = A[i] + B[i];
}</pre>
```

GPU version

```
__global__ void vecAdd(float* A, float* B, float* C)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    C[i] = A[i] + B[i];
}
```

Optimizing Algorithms for GPUs

- Maximize independent parallelism
- Maximize arithmetic intensity (math/bandwidth)
- Sometimes it's better to recompute than to cache GPU
 - GPU spends its transistors on ALUs, not memory
- Do more computation on the GPU to avoid costly data transfers
 - Even low parallelism computations can sometimes be faster than transferring back and forth to host

Optimize Memory Access

- Coalesced vs. Non-coalesced = order of magnitude
 - Global/Local device memory
 - Contiguous threads accessing contiguous memory
- Shared Memory
 - Hundreds of times faster than global memory
 - Threads can cooperate via shared memory
 - Use it to avoid non-coalesced access