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Tutorial Goals	

•  NVIDIA GPU architecture	
•  NVIDIA GPU	application development flow	
•  Write and run simple NVIDIA GPU kernels in 
CUDA	

•  Be aware of performance limiting factors and	
understand performance tuning strategies	



3	

Introduction	
•  Why use Graphics Processing Units (GPUs) for	
general-purpose computing	
	

•  Modern GPU architecture	
– NVIDIA	

•  GPU programming overview	
– CUDA C	
– OpenCL	



GPU vs. CPU Silicon Use	
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Graph is courtesy of NVIDIA	



NVIDIA GPU Architecture	
•  N	mul)processors	called	

SMs	
•  Each	has	M	cores	

called	SPs	

•  SIMD	
•  Same	instruc)on	

executed	on	SPs	

•  Device	memory	shared	
across	all	SMs	
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Figure is courtesy of NVIDIA	



NVIDIA GeForce9400M G GPU	
•  16 streaming processors 
arranged as 2 streaming 
multiprocessors	

•  At 0.8 GHz this provides	
–  54 GFLOPS in single- 
precision (SP)	

•  128-bit interface to off-	
chip GDDR3 memory	
–  21 GB/s bandwidth	
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NVIDIA Tesla C1060 GPU	
•  240 streaming 
processors arranged 
as 30 streaming 
mul)processors	

•  At 1.3 GHz this	
provides	
–  1 TFLOPS SP	
–  86.4 GFLOPS DP	

•  512-bit interface to 
off-chip GDDR3 
memory	
–  102 GB/s bandwidth	
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NVIDIA Tesla S1070 Computing Server	

•  4 T10 GPUs	
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GPU Use/Programming	
•  GPU libraries	

– NVIDIA’s	CUDA	BLAS	and	FFT	libraries	
– Many 3rd party libraries	

•  Low abstraction lightweight GPU	
programming toolkits	
– CUDA C	
– OpenCL	
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nvcc	
•  Any source file containing CUDA C language	
extensions must be compiled with nvcc	

•  nvcc is a compiler driver that invokes many other	
tools to accomplish the job	

•  Basic nvcc usage	
–  nvcc <filename>.cu [-o <executable>]	

•  Builds release mode	
–  nvcc -deviceemu <filename>.cu	

•  Builds device emula)on mode (all code runs on CPU)	
–  nvprof	<executable>	

•  Profiles	the	code	
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Anatomy of a GPU Applica)on	

•  Host side	
•  Device side	



Reference CPU Version	
void vecAdd(int N, float* A, float* B, float* C) 
{ for (int i = 0; i < N; i++)  C[i] = A[i] + B[i];	

}	

int  main(int argc, char **argv)	
{	
int N = 16384;  // default vector size	

float *A = (float*)malloc(N * sizeof(float)); 
float *B = (float*)malloc(N * sizeof(float)); 
float *C = (float*)malloc(N * sizeof(float));	

vecAdd(N, A, B, C);  // call compute kernel	

free(A); free(B); free(C);	

}	

Computational kernel	

Memory allocation	
 

Kernel invocation 

Memory de-allocation	
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Memory Spaces	
•  CPU and GPU have separate memory spaces	

–  Data is moved across PCIe bus	
–  Use func[ons to allocate/set/copy memory on GPU	

•  Host (CPU) manages device (GPU) memory	
–  cudaMalloc(void** pointer, size_t nbytes)	
–  cudaFree(void* pointer)	
–  cudaMemcpy(void* dst, void* src, size_t nbytes, enum 

cudaMemcpyKind direc[on);	
•  returns after the copy is complete	
•  blocks CPU thread un[l all bytes have been copied	
•  does not start copying un[l previous CUDA calls complete	

–  enum cudaMemcpyKind	
•  cudaMemcpyHostToDevice	
•  cudaMemcpyDeviceToHost	
•  cudaMemcpyDeviceToDevice	



Adding GPU support	
int  main(int argc, char **argv)	
{	
int  N = 16384;  // default vector size	

float *A = (float*)malloc(N * sizeof(float)); 
float *B = (float*)malloc(N * sizeof(float)); 
float *C = (float*)malloc(N * sizeof(float));	

float *devPtrA, *devPtrB, *devPtrC;	
 
cudaMalloc((void**)&devPtrA, N * sizeof(float)); 
cudaMalloc((void**)&devPtrB, N * sizeof(float)); 
cudaMalloc((void**)&devPtrC, N * sizeof(float));	

cudaMemcpy(devPtrA, A, N * sizeof(float),  cudaMemcpyHostToDevice);	
cudaMemcpy(devPtrB, B, N * sizeof(float),  cudaMemcpyHostToDevice);	

Memory allocation 
on the GPU card	

Copy data from the 
CPU (host) memory 
to the GPU (device) 
memory	
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Adding GPU support	
vecAdd<<<N/512, 512>>>(devPtrA, devPtrB, devPtrC);	

cudaMemcpy(C, devPtrC, N * sizeof(float),  cudaMemcpyDeviceToHost);	

cudaFree(devPtrA); 
cudaFree(devPtrB); 
cudaFree(devPtrC);	

free(A);	
free(B);	
free(C);	

}	

Kernel invocation	

Copy results from 
device memory to 
the host memory	

Device memory 
de-allocation	
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GPU Kernel	
•  CPU version	

void vecAdd(int N, float* A, float* B, float* C)	
{	
for (int i = 0; i < N; i++)	
C[i] = A[i] + B[i];	

}	
 
•  GPU version	

	  global__  void vecAdd(float* A, float* B, float* C)	
{	
int i = blockIdx.x * blockDim.x + threadIdx.x;	
C[i] = A[i] + B[i];	

}	



CUDA Programming Model	
•  A CUDA kernel is executed by	
an array of threads	
– All threads run the same code (SIMD)	
–  Each thread has an ID that it uses 
to compute memory addresses and 
make control decisions	

•  Threads are arranged as a grid of thread blocks	
– Threads within	
a block have access 
to a segment of 
shared memory	

… 
float  x  =  input[threadID]; 
float  y  =  func(x); 
output[threadID]  =  y; 
… 

threadID 

Grid	
Thread Block 0	

Shared memory	

Thread Block 1	

Shared memory	

Thread Block N-1	
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Shared memory	

…	



Kernel Invoca)on Syntax	
grid & thread block dimensionality	

vecAdd<<<32, 512>>>(devPtrA, devPtrB, devPtrC);	

int i = blockIdx.x * blockDim.x + threadIdx.x;	
thread ID within a thread block	number of threads per block	block ID within a grid	
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Grid	

Thread Block 0	
 
 
 

Shared memory	

Thread Block 1	
 
 
 

Shared memory	

Thread Block N-1	

…	
Shared memory	



Mapping Threads to the Hardware	
•  Blocks of threads are transparently 

assigned to SMs	
–  A block of threads executes on one 

SM & does not migrate	
–  Several blocks can reside	

concurrently on one SM	

•  Blocks must be independent	
–  Any possible interleaving of blocks 

should be valid	
–  Blocks may coordinate but not 

synchronize	
–  Thread blocks can run in any order	

Device 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel grid 
Device 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

Each block can execute in any	
order relative to other blocks.	
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Slide is courtesy of NVIDIA	
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GPU Memory Hierarchy	

•  Global (device) memory	
– Accessible by all threads as well as host (CPU)	
– Data life)me is from alloca)on to dealloca)on	

Host memory	

Device 0 
memory	

Device 1 
memory	

cudaMemcpy()	
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GPU Memory Hierarchy	

•  Global (device) memory	

Kernel 0	
Thread Block 0	 Thread Block 1	 Thread Block N-1	

…	

Kernel 1	
Thread Block 0	 Thread Block 1	 Thread Block N-1	

…	

Per-device 
Global 
Memory	
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GPU Memory Hierarchy	
•  Local storage	

–  Each thread has own local 
storage	

–  Mostly registers (managed by	
the compiler)	

–  Data life)me = thread life)me	

•  Shared memory	
–  Each thread block has own 

shared memory	
•  Accessible only by threads	
within that block	

–  Data life)me = block life)me	

Thread Block	
Per-block 
shared 
memory	

Per-thread 
local memory	
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GPU Memory Hierarchy	
Host	

CPU	

chipset	

DRAM	

Device	

DRAM	

local 
global	

constant	
texture	

GPU	
Mul)processor	
Mul)processor	
Mul)processor	

registers  shared	
memory	

constant and texture caches	
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Memory	 Loca[on	 Cached	 Access	 Scope	 Life[me	

Register	 On-chip	 N/A	 R/W	 One thread	 Thread	

Local	 Off-chip	 No	 R/W	 One thread	 Thread	

Shared	 On-chip	 N/A	 R/W	 All threads in a block	 Block	

Global	 Off-chip	 No	 R/W	 All threads + host	 Applica[on	

Constant	 Off-chip	 Yes	 R	 All threads + host	 Applica[on	

Texture	 Off-chip	 Yes	 R	 All threads + host	 Applica[on	
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GPU Kernel	
•  CPU version	

void vecAdd(int N, float* A, float* B, float* C)	
{	
for (int i = 0; i < N; i++)	
C[i] = A[i] + B[i];	

}	
 
•  GPU version	

	  global__  void vecAdd(float* A, float* B, float* C)	
{	
int i = blockIdx.x * blockDim.x + threadIdx.x;	
C[i] = A[i] + B[i];	

}	



Op)mizing	Algorithms	for	GPUs	
•  Maximize	independent	parallelism		
•  Maximize	arithme)c	intensity	(math/bandwidth)	
•  Some)mes	it’s	be3er	to	recompute	than	to	cache	

GPU		
•  GPU	spends	its	transistors	on	ALUs,	not	memory		

•  Do	more	computa)on	on	the	GPU	to	avoid	costly	
data	transfers		
•  Even	low	parallelism	computa)ons	can	some)mes	be	

faster	than	transferring	back	and	forth	to	host		
	



Op)mize	Memory	Access	

•  Coalesced	vs.	Non-coalesced	=	order	of	
magnitude	
•  Global/Local	device	memory		
•  Con)guous	threads	accessing	con)guous	memory	

•  Shared	Memory	
•  Hundreds	of	)mes	faster	than	global	memory	
•  Threads	can	cooperate	via	shared	memory	
•  Use	it	to	avoid	non-coalesced	access	


