
Introduc)on	to	GPU	Programming	

h3p://www.ncsa.illinois.edu/People/kindr/projects/hpca/files/singapore_p1.pdf	

	
	
	
	
	

h3p://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU_Compu)ng_Webinars_CUDA_Memory_Op)miza)on.pdf	

Mubashir	Adnan	Qureshi	

2	

Tutorial Goals	

•  NVIDIA GPU architecture	
•  NVIDIA GPU	application development flow	
•  Write and run simple NVIDIA GPU kernels in
CUDA	

•  Be aware of performance limiting factors and	
understand performance tuning strategies	

3	

Introduction	
•  Why use Graphics Processing Units (GPUs) for	
general-purpose computing	
	

•  Modern GPU architecture	
– NVIDIA	

•  GPU programming overview	
– CUDA C	
– OpenCL	

GPU vs. CPU Silicon Use	

4	
Graph is courtesy of NVIDIA	

NVIDIA GPU Architecture	
•  N	mul)processors	called	

SMs	
•  Each	has	M	cores	

called	SPs	

•  SIMD	
•  Same	instruc)on	

executed	on	SPs	

•  Device	memory	shared	
across	all	SMs	

5	
Figure is courtesy of NVIDIA	

NVIDIA GeForce9400M G GPU	
•  16 streaming processors
arranged as 2 streaming
multiprocessors	

•  At 0.8 GHz this provides	
–  54 GFLOPS in single-
precision (SP)	

•  128-bit interface to off-	
chip GDDR3 memory	
–  21 GB/s bandwidth	

TPC	
Geometry controller	

SMC	

SM	

Shared	
memory	

SFU SFU	

SP SP	

SP SP	

SP SP	

SP SP	

C cache	

MT issue	

I cache	
SM	

Shared	
memory	

SFU SFU	

SP SP	

SP SP	

SP SP	

SP SP	

C cache	

MT issue	

I cache	

Texture units	
Texture L1	

128-bit interconnect	

L2 ROP ROP L2	

6	

DRAM	 DRAM	

NVIDIA Tesla C1060 GPU	
•  240 streaming
processors arranged
as 30 streaming
mul)processors	

•  At 1.3 GHz this	
provides	
–  1 TFLOPS SP	
–  86.4 GFLOPS DP	

•  512-bit interface to
off-chip GDDR3
memory	
–  102 GB/s bandwidth	

TPC 1	
Geometry controller	

SMC	

SM	

Shared	
memory	

SFU SFU	

SP SP	

SP SP	

SP SP	

SP SP	

C cache	

MT issue	

I cache	
SM	

Shared	
memory	

SFU SFU	

SP SP	

SP SP	

SP SP	

SP SP	

C cache	

MT issue	

I cache	
SM	

Shared	
memory	

SFU SFU	

SP SP	

SP SP	

SP SP	

SP SP	

C cache	

MT issue	

I cache	

Texture units	
Texture L1	

TPC 10	
Geometry controller	

SMC	

SM	

Shared	
memory	

SFU SFU	

SP SP	

SP SP	

SP SP	

SP SP	

C cache	

MT issue	

I cache	
SM	

Shared	
memory	

SFU SFU	

SP SP	

SP SP	

SP SP	

SP SP	

C cache	

MT issue	

I cache	
SM	

Shared	
memory	

SFU SFU	

SP SP	

SP SP	

SP SP	

SP SP	

C cache	

MT issue	

I cache	

Texture units	
Texture L1	

ROP L2	L2 ROP	

512-bit memory interconnect	

DRAM	 DRAM	
DRAM	 DRAM	 DRAM	 DRAM	

DRAM	 DRAM	

7	

NVIDIA Tesla S1070 Computing Server	

•  4 T10 GPUs	

Tesla GPU	
Tesla GPU	

Tesla GPU	
Tesla GPU	

4 GB GDDR3
SDRAM	

4 GB GDDR3	
SDRAM	

4 GB GDDR3
SDRAM	 4 GB GDDR3

SDRAM	

NVIDIA
SWITCH	

NVIDIA
SWITCH	

Po
w
er

su
pp

ly
	

Th
er
m
al

m
an
ag
em

en
t	

Sy
st
em

m
on

ito
rin

g	

PCI x16	

PC
I x
16
	

12	
Graph is courtesy of NVIDIA	

9	

GPU Use/Programming	
•  GPU libraries	

– NVIDIA’s	CUDA	BLAS	and	FFT	libraries	
– Many 3rd party libraries	

•  Low abstraction lightweight GPU	
programming toolkits	
– CUDA C	
– OpenCL	

10	

nvcc	
•  Any source file containing CUDA C language	
extensions must be compiled with nvcc	

•  nvcc is a compiler driver that invokes many other	
tools to accomplish the job	

•  Basic nvcc usage	
–  nvcc <filename>.cu [-o <executable>]	

•  Builds release mode	
–  nvcc -deviceemu <filename>.cu	

•  Builds device emula)on mode (all code runs on CPU)	
–  nvprof	<executable>	

•  Profiles	the	code	

30	

Anatomy of a GPU Applica)on	

•  Host side	
•  Device side	

Reference CPU Version	
void vecAdd(int N, float* A, float* B, float* C)
{ for (int i = 0; i < N; i++) C[i] = A[i] + B[i];	

}	

int main(int argc, char **argv)	
{	
int N = 16384; // default vector size	

float *A = (float*)malloc(N * sizeof(float));
float *B = (float*)malloc(N * sizeof(float));
float *C = (float*)malloc(N * sizeof(float));	

vecAdd(N, A, B, C); // call compute kernel	

free(A); free(B); free(C);	

}	

Computational kernel	

Memory allocation	

Kernel invocation

Memory de-allocation	

12	

Host

CPU	

Host
Memory	

A	

B

C	

Adding GPU support	
GPU card

GPU	

Device
Memory	

gA	

gB

gC	

13	

14	

Memory Spaces	
•  CPU and GPU have separate memory spaces	

–  Data is moved across PCIe bus	
–  Use func[ons to allocate/set/copy memory on GPU	

•  Host (CPU) manages device (GPU) memory	
–  cudaMalloc(void** pointer, size_t nbytes)	
–  cudaFree(void* pointer)	
–  cudaMemcpy(void* dst, void* src, size_t nbytes, enum

cudaMemcpyKind direc[on);	
•  returns after the copy is complete	
•  blocks CPU thread un[l all bytes have been copied	
•  does not start copying un[l previous CUDA calls complete	

–  enum cudaMemcpyKind	
•  cudaMemcpyHostToDevice	
•  cudaMemcpyDeviceToHost	
•  cudaMemcpyDeviceToDevice	

Adding GPU support	
int main(int argc, char **argv)	
{	
int N = 16384; // default vector size	

float *A = (float*)malloc(N * sizeof(float));
float *B = (float*)malloc(N * sizeof(float));
float *C = (float*)malloc(N * sizeof(float));	

float *devPtrA, *devPtrB, *devPtrC;	

cudaMalloc((void**)&devPtrA, N * sizeof(float));
cudaMalloc((void**)&devPtrB, N * sizeof(float));
cudaMalloc((void**)&devPtrC, N * sizeof(float));	

cudaMemcpy(devPtrA, A, N * sizeof(float), cudaMemcpyHostToDevice);	
cudaMemcpy(devPtrB, B, N * sizeof(float), cudaMemcpyHostToDevice);	

Memory allocation
on the GPU card	

Copy data from the
CPU (host) memory
to the GPU (device)
memory	

15	

Adding GPU support	
vecAdd<<<N/512, 512>>>(devPtrA, devPtrB, devPtrC);	

cudaMemcpy(C, devPtrC, N * sizeof(float), cudaMemcpyDeviceToHost);	

cudaFree(devPtrA);
cudaFree(devPtrB);
cudaFree(devPtrC);	

free(A);	
free(B);	
free(C);	

}	

Kernel invocation	

Copy results from
device memory to
the host memory	

Device memory
de-allocation	

16	

17	

GPU Kernel	
•  CPU version	

void vecAdd(int N, float* A, float* B, float* C)	
{	
for (int i = 0; i < N; i++)	
C[i] = A[i] + B[i];	

}	

•  GPU version	

	 global__ void vecAdd(float* A, float* B, float* C)	
{	
int i = blockIdx.x * blockDim.x + threadIdx.x;	
C[i] = A[i] + B[i];	

}	

CUDA Programming Model	
•  A CUDA kernel is executed by	
an array of threads	
– All threads run the same code (SIMD)	
–  Each thread has an ID that it uses
to compute memory addresses and
make control decisions	

•  Threads are arranged as a grid of thread blocks	
– Threads within	
a block have access
to a segment of
shared memory	

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Grid	
Thread Block 0	

Shared memory	

Thread Block 1	

Shared memory	

Thread Block N-1	

18	

Shared memory	

…	

Kernel Invoca)on Syntax	
grid & thread block dimensionality	

vecAdd<<<32, 512>>>(devPtrA, devPtrB, devPtrC);	

int i = blockIdx.x * blockDim.x + threadIdx.x;	
thread ID within a thread block	number of threads per block	block ID within a grid	

19	

Grid	

Thread Block 0	

Shared memory	

Thread Block 1	

Shared memory	

Thread Block N-1	

…	
Shared memory	

Mapping Threads to the Hardware	
•  Blocks of threads are transparently

assigned to SMs	
–  A block of threads executes on one

SM & does not migrate	
–  Several blocks can reside	

concurrently on one SM	

•  Blocks must be independent	
–  Any possible interleaving of blocks

should be valid	
–  Blocks may coordinate but not

synchronize	
–  Thread blocks can run in any order	

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid
Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any	
order relative to other blocks.	

20	
Slide is courtesy of NVIDIA	

time	

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

GPU Memory Hierarchy	

•  Global (device) memory	
– Accessible by all threads as well as host (CPU)	
– Data life)me is from alloca)on to dealloca)on	

Host memory	

Device 0
memory	

Device 1
memory	

cudaMemcpy()	

21	

GPU Memory Hierarchy	

•  Global (device) memory	

Kernel 0	
Thread Block 0	 Thread Block 1	 Thread Block N-1	

…	

Kernel 1	
Thread Block 0	 Thread Block 1	 Thread Block N-1	

…	

Per-device
Global
Memory	

22	

GPU Memory Hierarchy	
•  Local storage	

–  Each thread has own local
storage	

–  Mostly registers (managed by	
the compiler)	

–  Data life)me = thread life)me	

•  Shared memory	
–  Each thread block has own

shared memory	
•  Accessible only by threads	
within that block	

–  Data life)me = block life)me	

Thread Block	
Per-block
shared
memory	

Per-thread
local memory	

23	

GPU Memory Hierarchy	
Host	

CPU	

chipset	

DRAM	

Device	

DRAM	

local
global	

constant	
texture	

GPU	
Mul)processor	
Mul)processor	
Mul)processor	

registers shared	
memory	

constant and texture caches	

24	

Memory	 Loca[on	 Cached	 Access	 Scope	 Life[me	

Register	 On-chip	 N/A	 R/W	 One thread	 Thread	

Local	 Off-chip	 No	 R/W	 One thread	 Thread	

Shared	 On-chip	 N/A	 R/W	 All threads in a block	 Block	

Global	 Off-chip	 No	 R/W	 All threads + host	 Applica[on	

Constant	 Off-chip	 Yes	 R	 All threads + host	 Applica[on	

Texture	 Off-chip	 Yes	 R	 All threads + host	 Applica[on	

25	

GPU Kernel	
•  CPU version	

void vecAdd(int N, float* A, float* B, float* C)	
{	
for (int i = 0; i < N; i++)	
C[i] = A[i] + B[i];	

}	

•  GPU version	

	 global__ void vecAdd(float* A, float* B, float* C)	
{	
int i = blockIdx.x * blockDim.x + threadIdx.x;	
C[i] = A[i] + B[i];	

}	

Op)mizing	Algorithms	for	GPUs	
•  Maximize	independent	parallelism		
•  Maximize	arithme)c	intensity	(math/bandwidth)	
•  Some)mes	it’s	be3er	to	recompute	than	to	cache	

GPU		
•  GPU	spends	its	transistors	on	ALUs,	not	memory		

•  Do	more	computa)on	on	the	GPU	to	avoid	costly	
data	transfers		
•  Even	low	parallelism	computa)ons	can	some)mes	be	

faster	than	transferring	back	and	forth	to	host		
	

Op)mize	Memory	Access	

•  Coalesced	vs.	Non-coalesced	=	order	of	
magnitude	
•  Global/Local	device	memory		
•  Con)guous	threads	accessing	con)guous	memory	

•  Shared	Memory	
•  Hundreds	of)mes	faster	than	global	memory	
•  Threads	can	cooperate	via	shared	memory	
•  Use	it	to	avoid	non-coalesced	access	

