Approaches for Angle of Arrival Estimation

Wenguang Mao

Angle of Arrival (AoA)

- Definition: the elevation and azimuth angle of incoming signals
- Also called direction of arrival (DoA)

AoA Estimation

- Applications: localization, tracking, gesture recognition,
- Requirements: antenna array
- Approaches:
 - Generate a power profile over various incoming angles
 - Determine all AoA θ_i

Related Concepts

- Synthetic aperture radar (SAR)
 - Using a moving antenna to emulate an array
 - Alternative way of using physical antenna array
 - NOT an estimation approach in the context of AoA
 - Most AoA estimation methods can be applied to both physical antenna array and SAR
- In this presentation, we only focus on antenna array
 - May require some modification when applied to SAR

Related Concepts

- Beamforming
 - A class of AoA estimation approaches
- MUSIC
 - A specific algorithm in subspace-based approaches

Approaches for AoA Estimation

- Naïve approach
- Beamforming approaches
 - Bartlett method
 - MVDR
 - Linear prediction
- Subspace based approaches
 - **MUSIC** and its variants
 - ESPIRIT
- Maximum likelihood estimator

•

Key Insights

- Phase changes over antennas are determined by the incoming angle
- Far-field assumption
- Phase of the antenna 1: ϕ_1
- Phase of the antenna 2: ϕ_1
- Then the difference is given by

$$\phi_2 - \phi_1 = 2\pi \frac{dcos\theta_1}{\lambda} + 2k\pi$$

Naïve approach

Determine AoA based on the phase difference of two antenna

$$cos\theta_1 = (\frac{\Delta\phi}{2\pi} - k)\frac{\lambda}{d}$$

- Problems:
 - Works for only one incoming signals
 - Phase measurement could be noisy
 - Ambiguity
- Adopted and improved by RF-IDraw

Using Antenna Array

• Received signals at *m*-th antenna:

$$x_m(t) = \sum_{n=1}^N s_n(t) e^{j \cdot 2\pi \cdot \tau_n \cdot (m-1)} + n_m(t)$$

$$s_n(t)$$
 : n-th source signals

$$\tau_n = \frac{d \cos \theta_n}{\lambda}$$
: phase shift per antenna

N : the number of sources

M : the number of antennas

 $n_m(t)$: noise terms

Using Antenna Array

• Matrix form:

$$\begin{bmatrix} x_1(t)^T \\ x_2(t)^T \\ \vdots \\ x_M(t)^T \end{bmatrix} = \begin{bmatrix} a(\theta_1) & a(\theta_2) & \cdots & a(\theta_N) \end{bmatrix} \begin{bmatrix} s_1(t)^T \\ s_2(t)^T \\ \vdots \\ s_N(t)^T \end{bmatrix} + \begin{bmatrix} n_1(t)^T \\ n_2(t)^T \\ \vdots \\ n_M(t)^T \end{bmatrix}$$

X = AS + N

Steering vector: $a(\theta) = \begin{bmatrix} 1 \ e^{j2\pi\tau(\theta)} \ e^{j2\pi\tau(\theta)\cdot 2} \ \dots \ e^{j2\pi\tau(\theta)(M-1)} \end{bmatrix}^T$

Beamforming at the Receiver

- Definition: a method to create certain **radiation pattern** by combining signals from different antennas with different **weights**.
- Will magnify the signals from certain direction while suppressing those from other directions

Beamforming at the Receiver

• Signals after beamforming using a weight vector w

$$Y = w^H X$$

- By selecting different w, the received signal Y will contain the signal sources arrived from different direction.
- Beamforming techniques are widely used in wireless communications

Beamforming at the Receiver

- Adjust the weight vector to rotate the radiation pattern to angle $\boldsymbol{\theta}$
- Measure the received signal strength $P(\theta)$
- Repeat this process for any θ in [0, pi]
- Plot $(\theta, P(\theta))$
- Peaks in the plot indicates the angle of arrival

Bartlett Beamforming

- Also called: correlation beamforming, conventional beamforming, delay-and-sum beamforming, or Fourier beamforming
- Key idea: magnify the signals from certain direction by compensating the phase shift
 Phase shift
- Consider one source signal s(t) arrived at angle θ_0
- Signal at *m*-th antenna: $x_m(t) = s(t) \cdot e^{j \cdot 2\pi \cdot \tau(\theta_0)(m-1)}$
- Weight at *m*-th antenna: $w_m = e^{j \cdot 2\pi \cdot \tau(\theta)(m-1)}$
- Only when $\theta = \theta_0$, the received signal $Y = w^H X = \sum w_m^* x_m(t)^T$ is maximized

Bartlett Beamforming

• Weight vector for beamforming angle θ :

$$P(\theta) = YY^{H} = (w^{H}X)(w^{H}X)^{H} = w^{H}XX^{H}w = w^{H}R_{XX}w = a^{H}(\theta)R_{XX}a(\theta)$$

w =

Covariance matrix

• Used by **Ubicarse** with SAR

• Signal power at angle θ :

Bartlett Beamforming

- Works well when there is only one source signal
- Suffers when there are multiple sources: very low resolution

Minimum Variance Distortionless Response (MVDR)

- Also called Capon's beamforming
- Key idea: maintain the signal from the desired direction while minimizing the signals from other direction
- Mathematically, we want to find such weight vector ${\it w}$ for the beaming angle θ

min{
$$YY^{H}$$
} = min{ $w^{H}R_{XX}w$ }
s.t. $w^{H}(a(\theta)s(t)^{T}) = s(t)^{T} \longrightarrow w^{H}a(\theta) = 1$
Maintain the signals from angle θ

MVDR

• Weight vector for beamforming angle θ :

$$w = \frac{R_{XX}^{-1} a^H(\theta)}{a(\theta) R_{XX}^{-1} a^H(\theta)}$$

• Signal power at angle θ :

$$P(\theta) = YY^{H} = w^{H}R_{XX}w = \frac{1}{a(\theta)R_{XX}^{-1}a^{H}(\theta)}$$

MVDR

- Resolution is significantly enhanced compared to Bartlett method
- But still not good enough
- Better beamforming approaches are developed, e.g., Linear Prediction
- Or resort to **subspace based approaches**

Subspace Based Approaches

- Beamforming is a way of shaping received signals
 - Can be used for estimating AoA
 - Can also be used for directional communications
- Subspace based approaches are specially designed for parameter (i.e., AoA) estimation using received signals
 - Cannot be used for extracting signals arrived from certain direction
- Subspace based approaches decompose the received signals into "signal subspace" and "noise subspace"
 - Leverage special properties of these subspaces for estimating AoA

Multiple Signal Classification (MUSIC)

- Key ideas: we want to find a vector q and a vector function $f(\theta)$
- Such that $q^H f(\theta) = 0$ if and only if $\theta = \theta_i$ (i.e., one of AoA)
- Then we can plot $\boldsymbol{p}(\boldsymbol{\theta}) = \frac{1}{\|q^H f(\boldsymbol{\theta})\|^2} = \frac{1}{f^H(\boldsymbol{\theta})qq^H f(\boldsymbol{\theta})}$
- The peaks in the plot indicates AoA
- We can expect **very sharp peak** since $q^H f(\theta) = 0$, so the inverse of its magnitude is infinity

How to find q and $f(\theta)$

Multiple Signal Classification (MUSIC)

- MUSIC gives a way to find a pair of q and $f(\theta)$
- The signals from antenna array

$$X = AS + N$$

• Covariance matrix of the signals

$$R_{XX} = E[XX^{H}] = E[ASS^{H}A^{H}] + E[NN^{H}]$$

$$R_{XX} = AE[SS^{H}]A^{H} + \sigma^{2}I$$

$$R_{XX} = AR_{SS}A^{H} + \sigma^{2}I \quad \longleftarrow \text{ Noise terms}$$
Signal terms

MUSIC

- Consider the signal term
- R_{SS} is $N \times N$ matrix, where N is the number of source signals
 - *R*_{ss} has the rank equal to *N* if source signals are independent
- A is $M \times N$ matrix, where M is the number of antenna
 - A has full column rank
 - The signal term is $M \times M$ matrix, and its rank is N
 - The signal term has N positive eigenvalues and M N zero eigenvalues, if M>N
 - There are M N eigenvectors q_i such that $AR_{SS}A^Hq_i = 0$
 - Then $A^H q_i = 0$, where $A = \begin{bmatrix} a(\theta_1) & a(\theta_2) & \cdots & a(\theta_N) \end{bmatrix}$

MUSIC

- $a(\theta)$ is the steering function, so it is known
- Needs to determine q_i , which needs the eigenvalue decomposition of the signal term.
- We don't know the signal term; we only know the sum of the signal term and the noise term, i.e., R_{XX}
- All of eigenvectors of the signal term are also ones for R_{XX} , and corresponding eigenvalues are added by σ^2
- Only need to find the eigenvectors of R_{XX} with eigenvalues equal to σ^2

MUSIC

- Derive R_{XX}
- Perform eigenvalue decomposition on R_{XX}
- Sort eigenvectors according to their eigenvalues in descent order
- Select last M N eigenvectors q_i
- Noise space matrix $Q_N = [q_{M+1} \ q_{M+2} \ \dots \ q_N]$
- $Q_N^H a(\theta) = 0$ for any AoA θ_i
- Plot $p(\theta) = \frac{1}{a^H(\theta)Q_NQ_N^Ha(\theta)}$ and find the peaks

Performance Comparison

Performance Comparison

