Improving Localization and Energy Efficiency of Smartphone Applications

Swadhin Pradhan

Supervisor: Niloy Ganguly

Department of Computer Science & Engineering Indian Institute of Technology Kharagpur

MS Defence Seminar, January 2, 2015

Outline

- Motivation
- Objectives

Improving Location Sensing

- Landmarks and Localization
- Experiments and Evaluation
- Different Applications based on Virtual Landmarks
- 3 Cellular Radio Energy Reduction
 - Background
 - Problem and Algorithms
 - Experiments and Evaluation
 - Summary

Motivation

Impact of Smartphones

- One in every five people in the world carries a smart phone. (BusinessInsider study)
- Smartphone app industry is growing (expected to reach \$40 billion by 2015).
- By 2019 there will be **5.6 billion** smartphones carried by people. (Ericsson study)
- But, smartphone has many issues ...

Motivation

Issues in Location Sensing in Smartphone

GPS is problematic

- 10m error, Multi-path effect.
- High Energy Cost.
- Not available in Indoor.

Indoor Localization

- Infrastructure based solution not good enough. (RFID based, FM based, GSM tower based, WiFi AP based etc.)
- SLAM from robotics (kalman filter, coupled sensing etc.). But, needs costly sensor, precise movement etc.

Outdoor Localization

Assisted GPS, Collaborative GPS etc. But, still has GPS issue .

Motivation

Issues in Smartphone Energy Consumption

Poor apps draining energy

- Display, Network, and CPU are main components of Energy Drain.(MobiCom '13)
- Poorly written apps can sap 30% to 40% of a phone's battery. (IMC '09)

Cellular Energy Consumption is a major part

- Network intensive applications are increasing (69% of the apps are cloud based)
- Different background services running intermittently and waking up the network card for a small duration. (WWW '12)

Objectives

Objectives of the Thesis

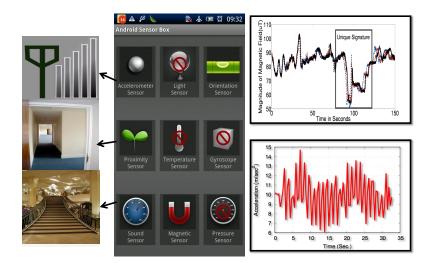
Efficient Localization in Smartphones

This shows that how localization can be improved using the different sensors in smartphones by detecting environmental signatures.

(S. Pradhan et. al., COMSNETS 2014)

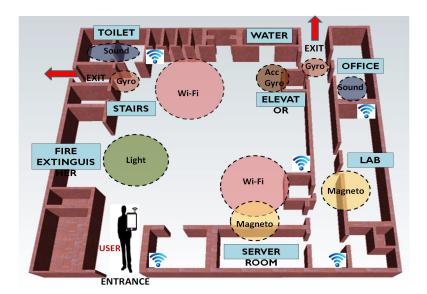
Energy Efficient Cellular Radio Usage in Smartphones

This attempts to solve the problem of energy drain in cellular radio by intelligently scheduling of concurrent requests. (*S. Pradhan et. al., COMSNETS 2015*)

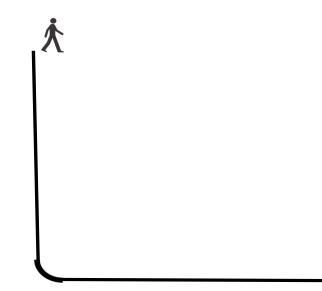

Developing Prototypes as proof of concepts

We have developed a retail app called **RetailGuide** and a virtual sign creator app called **SignFinder**.

Improving Location Sensing

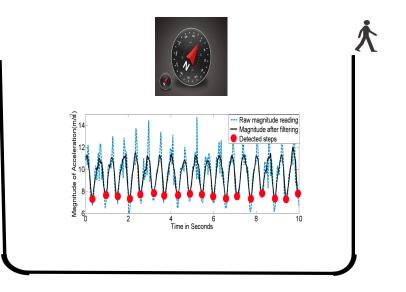

Landmarks and Localization

Landmarks = Sensors + Location

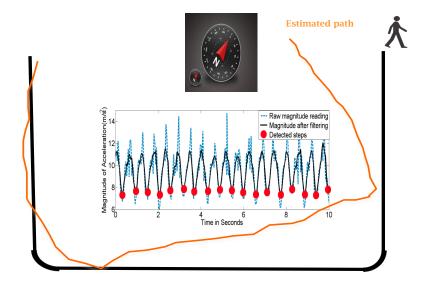


Landmarks and Localization

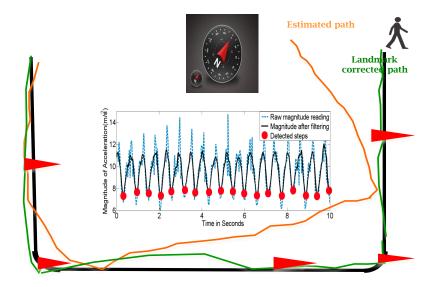
Location Annotation via Landmarks



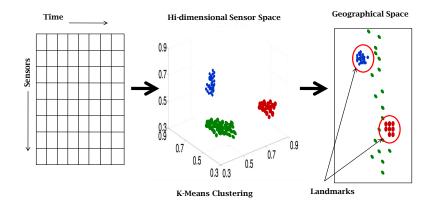
Landmarks and Localization



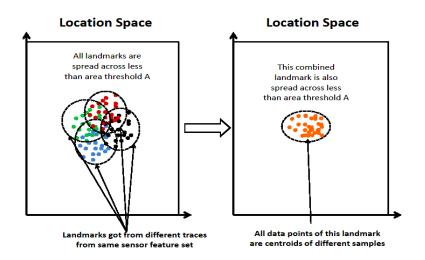
Landmarks and Localization


Landmarks and Localization

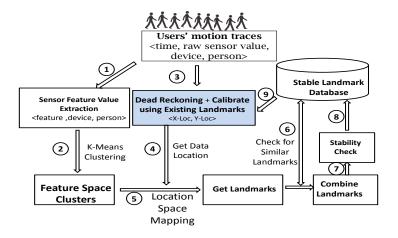
Landmarks and Localization



Landmarks and Localization


Landmarks and Localization

Pruning Virtual Landmarks


Landmarks and Localization

Finding Stable Virtual Landmarks

Landmarks and Localization

Architecture of the proposed system

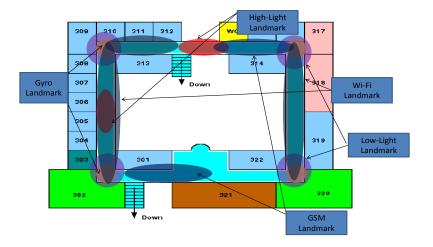
Experiments and Evaluation

Experimental Setup

Devices, Users, Time

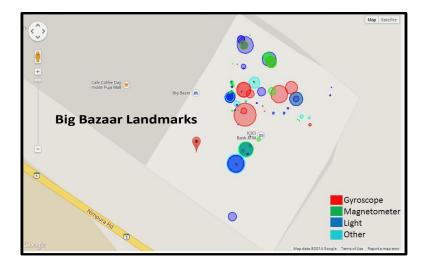
- Samsung Galaxy S2, Samsung Galaxy S3, and Google Nexus
- 6 Users, Day and Night

Platform

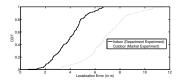

Android 4.2.x

Places

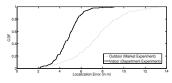
- Department and Tech Market (to evaluate Indoor and Outdoor Scenario)
- Department (Pseudo Mall Scenario) and Big Bazaar (Actual Mall Scenario) [*Market Experiment*]


Experiments and Evaluation

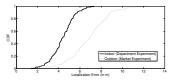
Landmarks at Department

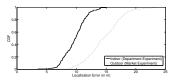

Experiments and Evaluation

Landmarks at Big Bazaar



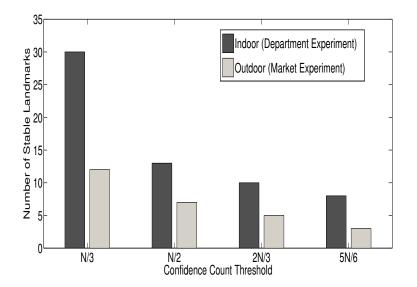
Experiments and Evaluation


Localization Error


(a) Error without changing any

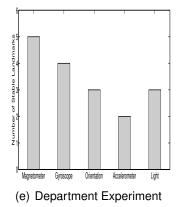
(c) Error with changing time

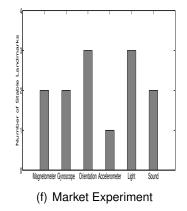
(b) Error with changing person


(d) Error with changing device

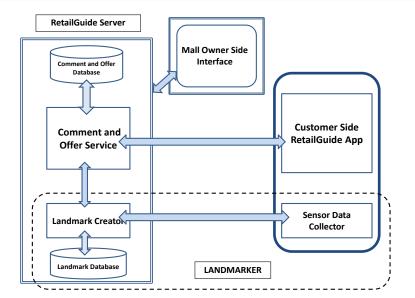
Impact on Localization Error

Device >> **Time** > **Person**


Experiments and Evaluation


Landmarks in Indoor and Outdoor

Experiments and Evaluation


Sensorwise Stable Virtual Landmarks in Different Experiments

Different Applications based on Virtual Landmarks

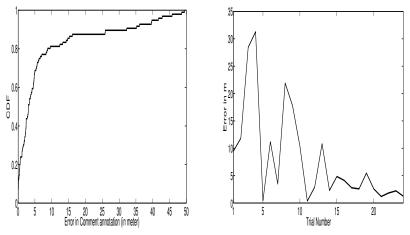
RetailGuide Implementation

Different Applications based on Virtual Landmarks

RetailGuide : Android App

Pushed Notification of Comments

Users' Rating and Commenting Interface


Different Applications based on Virtual Landmarks

RetailGuide : Admin-side Web Interface

energj itkgp.ac.in :8280/Land	dmark/mallOwner.php	V C Scogle	▶ 令 ☆自 # - 8 - Ξ
Enter Offers Get Database	Vew Database Comments Log Activity Log Wew Landmarks Trends	View HealMap Map Sociate	 Initial Offer Initial Point:
•			(22.341551094111885, 87.30107452761263) Offer Point: (22.341722987176286, 87.30147778987886)
	fe Collee Day 💌		Relative Co-ordinates: X:41.52112799317532 Y: 19.135103943717098
-	Big Stater (b) Bierk ATM (B)	•	Offer: Get 1 Scap Free with purchase of 2 Shampoo bottles
Ð	•		Coverage. 10 Submit
Ning Geogle	We let 0	Map data 8201/2 Google Tems of Use Reports map error	

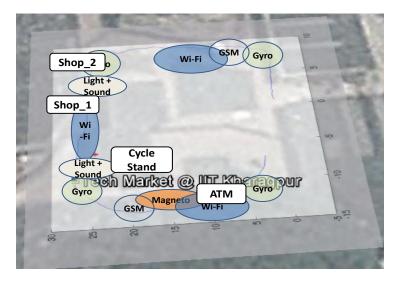
Different Applications based on Virtual Landmarks

Comment Tagging Accuracy in RetailGuide

(g) CDF of Accuracy of Tagging of Comments to particular locations

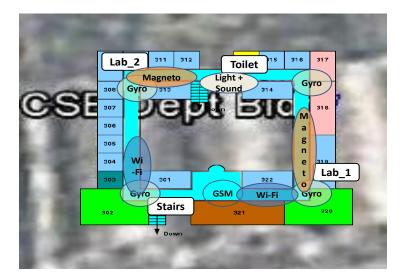
(h) Change of Accuracy of Tagging of Comments with Trials

Different Applications based on Virtual Landmarks


Signfinder : Virtual Sign Creator App

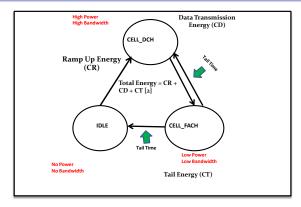
Signs with corresponding Sensor Signature Vectors

Signs	Sensor Signature	
Toilet	High Sound, High Light, Low Wi-Fi, High GSM, High Relative Humidity	
ATM	Low Sound, High Light, Low Wi-Fi, High Magnetic Signa- ture, Low Relative Humidity	
Lab	High Sound, High Light, Low Wi-Fi, Low GSM, High Magnetic Signature, Low Relative Humidity	
Stair	High Sound, Low Light, Low Wi-Fi, Low GSM, High Gyroscope Signature Change	
Shop	High Sound, Low Light, High Wi-Fi, High GSM, Low Magnetic Signature	
Cycle Stand	High Sound, High Light, High Wi-Fi, High GSM, High Magnetic Signature	


Different Applications based on Virtual Landmarks

Virtual Signboards in Outdoor Area

Different Applications based on Virtual Landmarks


Virtual Signboards in Indoor Area

Improving Cellular Radio Energy Consumption

Background

3G Cellular Radio Energy Model

Total Energy Consumption = CR + CD + CT,

where CR is the ramp up energy (**IDLE to CELL DCH**), CD is the data transmission energy, and CT is the tail energy (in CELL FACH).

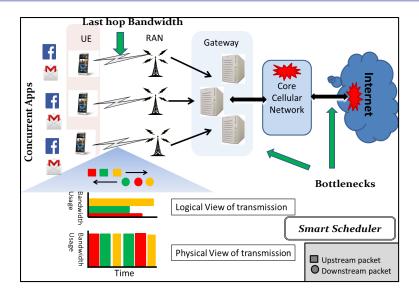
Background

Related Works

Tail Time Prediction based Solutions

TOP (ICNP '10), RadioJockey (MobiCom '12) etc.

Batching and Delayed Transfer based Solutions


TailEnder (MobiCom '10)SmartEmailSync (MobiSys '13)TailTheft (MobiArch '11) etc.

Proxy Based Solutions to tackle bottleneck

CatNap (MobiSys '10) etc.

Background

Total View of App Connectivity

Problem and Algorithms

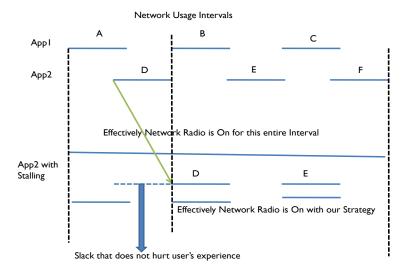
Problem Description

- A set of applications, running in parallel, request for network resource intermittently.
- Depending on application, a flexibility or slack time is allowed to schedule each packet.
- Requests from the same application cannot be triggered simultaneously.
- Total bandwidth consumption by all the scheduled requests should be less than the available channel bandwidth.

Problem and Algorithms

Problem Objective

Objective


Scheduling all network requests using minimum energy without hurting user's experience.

Multi objective optimization problem

- Minimum Energy => Best utilization of bandwidth (Side-effect : Lower Switching Frequency).
- User's Experience => Request should be served within deadline.

Problem and Algorithms

Idea: Cross Application Aggregation

Problem and Algorithms

Approach Intuition

- If a request is delayed then there is potentially more opportunity of batching.
- If a request is delayed much, it may miss deadline.
- So, we need to develop a function to decide if a request should be scheduled or should be delayed.

Problem and Algorithms

Offline Algorithm

Input: Number of requests: Requests[1n]; Output: Scheduling of ever	
Intialization: size=1; while size < n do start =1; end = n - size;	Dynamic programming approach to find the maximum possible overlap without violating the bandwidth constraint.
while start < end do Compute BS(Reque if violates bandwidth Remove violatio	
end start++; end	
size++; end	

Problem and Algorithms

Online Algorithms

Lazy Scheduling

- Running Queue(RQ) has all the running requests served by Cellular Radio.
- Wait Queue(WQ) has all the pending requests.
- Wait-as-long-as-you-can Policy
- Push all possible requests to the **Running Queue**, when wait is no more possible.

Problem and Algorithms

Online Algorithms

Early Scheduling

- If Running Queue is empty, follow Wait-as-long-as-you-can policy.
- If Running Queue is not empty, push all incoming requests to the Running Queue (if Bandwidth is available).

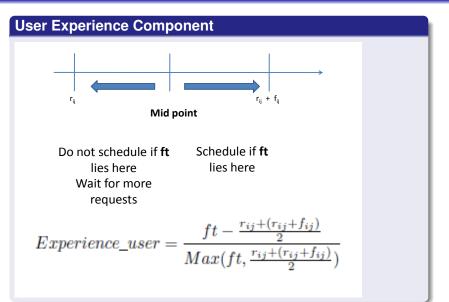
Problem and Algorithms

Online Algorithms

Balanced Scheduling

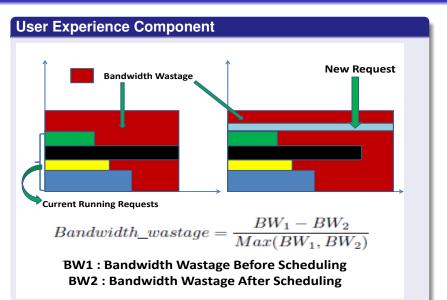
if Compatible Request found in Wait Queue then Evaluate F function; if F > 0 then $F = \beta \cdot Bandwidth_wastage + (1 - \beta) \cdot Experience_user$ Remove it from Wait Queue; Put it in Run Queue; end end Algorithm 3: Balanced Scheduling Algorithm

Problem and Algorithms


Balanced Scheduling

Terminology

- A_i = ith application
- A_{ij} = jth request of ith application
- r_{ij} = Arrival time of A_{ij}
- x_{ij} = Scheduling time of A_{ij}
- *f_{ij}* = slack time time of *A_{ij}*
- *d_{ij}* = service duration of *A_{ij}*
- ft = finish time of all requests in run queue


Problem and Algorithms

Deciding Function F

Problem and Algorithms

Deciding Function F

Experiments and Evaluation

Experimental Setup

Application Types (MobiSys '12)

Gaming (Short Bursts), Browsing (Medium Bursts), and Streaming (Large Bursts)

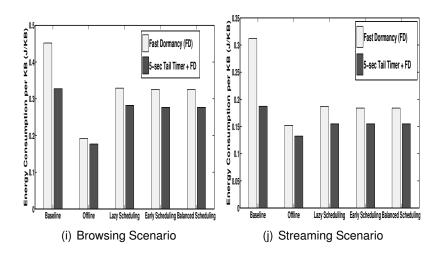
Synthetic Trace Generation tuning parameters

- Application Sync Timing (Fixed Intervals)
- User Interaction Timing (Power Law)
- Data Transmission Size (Power Law with set of sizes)
- Bandwidth Demand (Fixed Demand per App)
- Slack Duration (Fixed per network request type per App)

Switching Strategies

- Fast Dormancy
- Fast Dormancy with Tail Timer

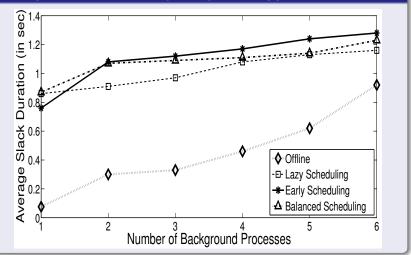
Experiments and Evaluation


Evaluation Setup

Evaluation Metrics

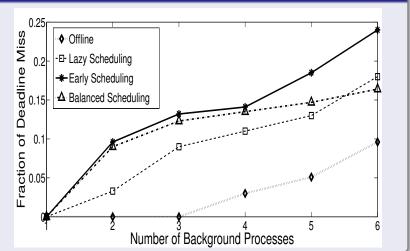
- Energy Consumption per KB: Total energy spent to transmit one KiloByte of data over the network interface.
- **Deadline Miss**: Proportion of requests which have missed their transmission deadline.
- Switching Frequency: Number of times per unit time the radio changes state (from IDLE to DCH, and DCH/FACH to IDLE).
- **Radio On Time**: Radio on time as a fraction of total data transmission duration.

Experiments and Evaluation

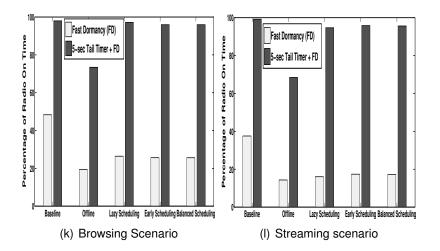

Energy Gain

Experiments and Evaluation

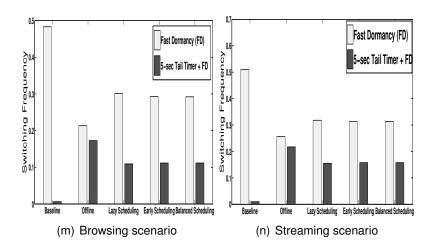
User Experience


Average slack incurred by foreground app

Experiments and Evaluation


User Experience

Fraction of overall packets from foreground app missing deadli

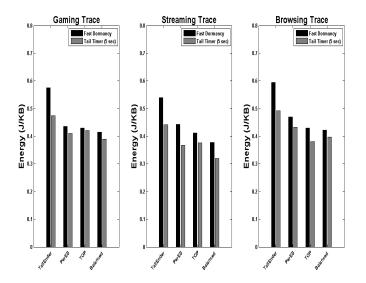

Experiments and Evaluation

Percentage of duration when the radio was ON

Experiments and Evaluation

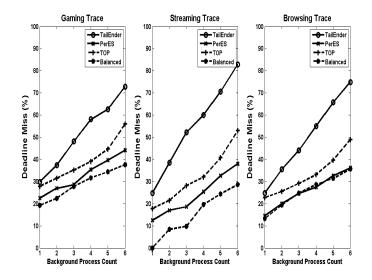
Switching frequency comparison

Experiments and Evaluation


Comparing with Different State-of-the-art Techniques

Competing Schemes

- **TailEnder**: TailEnder uses threshold based tail time prediction by considering deadlines of packets of an application.
- PerES: Models cross application energy-delay trade-off as an optimization problem and applies Lyapunov optimization framework.
- **TOP**: Tail Optimization Protocol (TOP) reduces tail energy wastage by predicting the application behavior.


Experiments and Evaluation

Energy Gain Comparison

Experiments and Evaluation

Deadline Miss Comparison

Experiments and Evaluation

Result Summary from Synthetic Trace

- For Gaming Scenario and Streaming Scenario, Onine Algorithms give around 30% Energy Gain.
- Switching Frequency and Percentage of Radio On time is reduced by around 20%.
- Percentage of Deadline Misses for Foreground App remains satisfactory.
- Around 10% better than PerEs and TOP in Energy Gain wise, but far better from TailEnder.

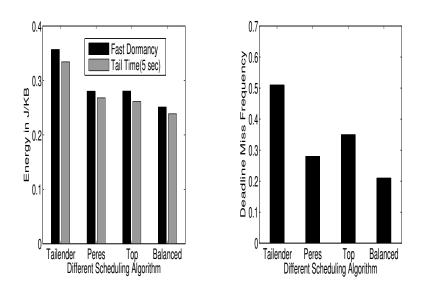
Experiments and Evaluation

Real Trace Collection and Challenges

Through VpnService

- PROS : No Rooting
- CONS: Multiple Apps not in parallel

Through tcpdump, netstat, and ps


- PROS: Multiple Apps, More detailed
- CONS: Rooting

Through ARO tool and netstat and ps (We Used)

- PROS: Multiple Apps, More detailed
- CONS: Rooting

Experiments and Evaluation

Real Trace based Results

Summary

Takeaways

- Reasonable localization accuracy using virtual landmarks which can help to build many applications like *RetailGuide* or *SignFinder*. Device heterogeneity is the main reason of instability of virtual landmarks.
- Balanced Scheduling across Applications yields more benefit and gives around 10 to 40% energy gain (due to better utilization of *CELL_DCH*). This aggregation strategy does not hurt much the user experience.

Queries from Prof. C.S. Kumar

Q1: Can the coupled use of multiple sensors with Markov model be adopted to increase the accuracy of localization?

We have used single or multiple sensors to create landmarks and then used landmarks for localization. However, we have not adopted coupled use of multiple sensors with markov decision model which is norm in SLAM kind of system in robotics. The main reasons are the following:

- For coupled use of multiple sensor for error correction, we need very accurate sensors which are available in robotics but real world smartphone sensors are very noisy .
- Robotic movements are very accurate. So, we can use one sensor to simultaneously correct other sensors using kalman filter like approach which is sadly not possible in smartphone scenario.

Queries from Prof. C.S. Kumar

Q2: Can these schedulers be used in online setting (e.g. in real multiple application running scenario) to reduce energy?

Yes, our scheduler can be used in online setting to handle multiple requests coming from different apps running in smartphone. Specially, balanced scheduling actually trades off between bandwidth wastage and user experience to handle different requests from different apps in online setting.

Queries from Prof. C.S. Kumar

Q3: Can a default energy model be used to compare the energy consumption?

We have used initially baseline scheme (FCFS) for comparing energy. Later, as per the suggestion, we have introduced different state-of-the-art online competing schemes like PerEs, TOP etc. to compare with our balanced scheduling algorithm. The new results are incorporated in the section 4.4 and section 4.5 of the thesis.

Queries from Prof. Vinayak Naik

Q1: 50% of how many data points to consider the stability of landmarks?

We have used 6 users with 4 trials each for 4 (time,device) pairs. So, we have got $6^*4^*4 = 96$ data points for our experiments. If one landmark appeared in more than 48 data points, we consider it as stable. However, we initially tried with more trials with two users, but the experiments did not provide more stable landmarks.

Queries from Prof. Vinayak Naik

Q2: How often one should check wait queue in Early Scheduling?

Packets which are ready for transmission are taken out of wait queue and put into run queue. The readiness of the packet will be computed in wait queue by using early strategy. Scheduler at every time instant checks wait queue but only wakes up run queue whenever insertion/deletion happens based on the strategy. Therefore, the frequency of wait queue checking depends upon the trace.

Future Works

- Large scale deployment and different architectural tweaks (distributed landmark database) can be done, for *RetailGuide*.
- If we add this landmark based localization system to other infrastructure based indoor localization, how it will work?
- Building middleware which will run our aggregation strategy across applications.
- Extension and implementation of in other elements like sensors, GPS etc.
- Building a Application network activity recorder tool which can be installed without rooting.

Thanks to all Collaborators

- Prof. Niloy Ganguly (IIT KGP)
- Prof. Bivas Mitra (IIT KGP)
- Prof. Pradipta De (SUNY, Korea)
- Prof. Romit Roy Choudhury (UIUC, USA)
- Sourav Dandapat (PhD Student, IIT KGP)
- Ananth Balashankar (Dual Student, IIT KGP)

Publications from the Thesis

- S. Pradhan, A. Balashankar, S. Dandapat, B. Mitra, N. Ganguly, "(Stable) Virtual Landmarks: Enhancing Localization centric Smartphone Applications", communicated to *IEEE Transactions on Mobile Computing*.
- S. Pradhan, S. Dandapat, B. Mitra, N. Ganguly, P. De, "Aggregating Inter-App Traffic to Optimize Cellular Radio Energy Consumption on Smartphones", COMSNETS, 2015, (A poster version has been showcased in *XRCI* Open, 2014).
- **S. Pradhan**, A. Balashankar, B. Mitra, N. Ganguly, "(Stable) Virtual Landmarks : Spatial Dropbox to enhance Retail Experience", **COMSNETS**, 2014.

Thank You

Any Questions

