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ABSTRACT

Rotational movement is important in many applications, yet has

been under-explored. In this paper, we explore the feasibility of

using a single RFID reader antenna to simultaneously sense rotation

and translation movement (i.e., rotation axis, rotation speed, and

translation speed). We exploit the polarization in RFID to enable

motion sensing. We develop an analytical model to capture the

impact of polarization on the received signal and an optimization

framework to incorporate the model to estimate the movement.

We implement our system, Tag-based Inertial Measurement Unit

(TIMU ), and demonstrate its effectiveness through an extensive

evaluation. To our knowledge, this is the first system that tracks

general motion using a single RFID reader antenna.
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1 INTRODUCTION

Recently there has been a surge of research interest in motion

sensing. Many innovative sensing approaches have been proposed

using a variety of wireless signals, includingWiFi (e.g., [12], acoustic
(e.g., [28]), RFID (e.g., [26, 34]), and 60 GHz (e.g., [35]). Most of these

works estimate distance and angle of arrival to track translation.

Interestingly, rotation tracking is under-explored. On the other

hand, rotation plays a significant role in many applications (e.g.,
sports analytics, factory assembly line monitoring). Moreover, exist-

ing device-free motion tracking systems, including WiFi, acoustic,

laser, do not track the ball movement well due to its small size,

which limits the amount of reflection and results in a large error.

Gyroscope based approach is one way to sense rotational move-

ment, however, gyroscope gets saturated within a few revolutions

per second [7]. To improve accuracy, [16] combines gyroscope with
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Figure 1: Architectural Overview of TIMU.

magnetometer and UWB beacon with an antenna array to track a

ball’s rotation. However, it requires battery and significant modifi-

cation to the ball. Battery replacement is not only costly but also

inconvenient. Moreover, the gyroscope, magnetometer, and UWB

should be placed carefully inside a ball to track its rotation. This

significantly increases the manufacturing cost and the weight of the

ball, which is undesirable. It also requires a way to communicate

the sensed motion from the ball back to the analytics system.

Long-range high-resolution camera network is another option

but suffers from occlusion and high cost ($100,000+) [16]. It is not

good at tracking fast rotation (e.g., beyond 50 RPM) even with clear

markers. Tagyro [36] places multiple parallel tags on an object and

tracks the phase change to estimate the 3D orientation. Therefore

[36] requires tags with a large separation (e.g., 8.2 cm), multiple

antennas, and extensive calibration.

Our approach:Motivated by the existing works and their limita-

tions, we propose a novel translation and rotation tracking algo-

rithm using a single RFID reader antenna. A reader with a single

antenna is much cheaper and more readily available. Our tracking

system can achieve (i) high tracking accuracy for both rotation and

translation movement, (ii) low cost (because of single port RFID

reader with a single antenna costs $600 compared to multi-port

RFID reader with four antennas cost around $3000), (iii) easily cus-

tomizable for different shapes and sizes, (iv) negligible physical

foot-print, and (v) battery-free. It is a passive battery-free sens-

ing approach using RFID. We attach RFID tags to a ball and use

a commercial-off-the-shelf (COTS) reader to sense both rotation

and translation movement as shown in Figure 1, where the tag

and reader antenna are both linearly polarized to enable accurate

battery-free motion sensing. Our system is user friendly since RFID

tags are cheap, light-weight, and easy to attach. We exploit the

polarization between an RFID tag and a reader antenna for tracking

using a single reader antenna. Due to RFID polarization, the mag-

nitude and phase of the received signal are significantly affected

by the relative orientation and position between the RFID antenna

and tag. Therefore, we can use the reflected signal arriving at the

RFID antenna to estimate the motion.

To maximize the accuracy, we use a linearly polarized tag and

reader antenna, since the received signal in this case is most sen-

sitive to the relative orientation and position between the tag and

reader antenna. Moreover, linear polarization also significantly re-

duces the multipath since signals outside the polarized direction

are significantly weakened.

https://doi.org/10.1145/3466772.3467036
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To realize this vision, we decompose the general tracking prob-

lem into three more tractable sub-problems: (i) tracking rotation

given a fixed ball position, (ii) tracking translation movement, and

(iii) integrate the rotation tracking and translation tracking.

For (i), we analytically derive the reflected signal arriving at the

RFID antenna given the relative position and orientation between

the reader and tag by considering the polarization and non-uniform

gains of the RFID reader and tags. We apply our model to derive the

received signals during rotation for a given rotation axis. We then

search the rotation axis whose estimated signals during a rotation

best matches with the measurement. We cast this tracking problem

as a non-convex optimization problem and design a deep neural

network (DNN) to efficiently find a good initial solution. We further

refine the solution by capturing the temporal locality.

For (ii), we use the phase change to track the relative distance

change and use frequency hopping to get the absolute distance.

Tracking the angle of arrival (AoA) using a single antenna is more

challenging. Existing works require multiple antennas to estimate

AoA. We realize one-antenna based AoA estimation by using the

same non-linear optimization framework, which leverages the po-

larization and non-uniform gains in the antenna and tags. We can-
not guarantee a unique RSS pattern across all AoAs and rotation

axes, so our scheme to determine AoA and rotation axis simulta-

neously is best effort. Its accuracy improves by using multiple tags

with different orientations and leveraging temporal locality during

movement.

Finally, we integrate our rotation tracking with translation track-

ing to handle general movement involving both rotation and trans-

lation. We build a system, called TIMU (Tag Inertial Measurement

Unit), which turns COTS RFID Tags into battery-free IMUs. It mea-

sures motion parameters, including rotation axis, rotation speed,

3D position in a battery-free manner, while eliminating the need

for an additional communication channel to report.

Our contributions can be summarized as follow: (i) We develop a

systematic model that captures the impact of polarization between

an RFID tag and a reader antenna on the phase andmagnitude of the

received signal. It captures non-uniform gain between the RFID tags

and reader antenna. (ii) We design a novel algorithm that uses the

polarization to estimate the rotation axis and average rotation speed

using a single RFID reader antenna. We extend our algorithm to

further estimate AoA as well as distance using a single RFID reader

antenna. To the best of our knowledge, this is the first system that

senses general motion including both rotation and translation using

a single RFID reader antenna. (iii) We implement and evaluate our

approach and demonstrate its feasibility in a range of scenarios,

including environments with static or dynamic multipath.

2 RELATEDWORKS

There have been significant research on motion tracking. We group

them based on the type of signals being used.

IMU: Researchers in [17] embed IMUs in a cricket ball to extract

relevant features, such as angular velocity, time of flight, ranging.

Moreover, [21] measures spin-analytics in the context of a bowling

ball. However, the tracking accuracy degrades significantly as the

rotation speed increases. It is also challenging to track moving

distance using inertial sensors due to error accumulation [20].

Wireless tracking: There has been lots of wireless tracking ef-

fort during the past decades. Many existing works employ differ-

ent channel characteristics for tracking, such as Angle of Arrival

(AoA) [22], Time of Flight (ToF) [15], and channel state informa-

tion (CSI), or their combination [38]. [23] pushes the accuracy to

sub-centimeter level. These approaches, however, usually require a

large phased array, a large frequency bandwidth, and Line-Of-Sight

(LOS) condition to achieve good performance.

System Goal Key Innovation Limitation

TTrack [24] Fine-grained single-

shot 3D tag tracking

Large bandwidth

(100 MHz) and

OFDM

Three USRPs with six an-

tenna setup with off-line

Gaussian HMM based

tracking

RFind [25] Fine-grained tag

tracking

Large bandwidth

(300 MHz) + multi-

antennas

Custom USRP setup with

off-line clustering based

tracking

RFComp. [33] Robot object manipu-

lation

use SAR to build

multi-path profile

Coarse-grained tracking

possible

PDraw [31] Tag movement track-

ing

Use the effect

of orientation of

passive tag on back-

scattered signal

Recognize a fixed set of

alphabets using a two an-

tenna based setup

Tagyro [36] Estimate static 3D

orientation

Use phase change at

multi-antennas

Extensive initial calibra-

tion

OmniTrack [19] Estimate static 3D

orientation and

location

Use polarization at

multi-antennas

Extensive initial calibra-

tion

Table 1: Summary of a few RFID based tracking systems.

RFID-based tracking: Passive RFID based sensing is closely re-

lated to our work. We summarize various schemes in Table 1.

Among them, Tagyro [36] tracks rotation movement. It tracks the

3D orientation of a passive object using two orthogonal RFID reader

antennas and an array of passive RFID tags. Our work advances [36]

in the following ways: (i) [36] requires multiple reader antennas

whereas we show the feasibility of general motion tracking using a

single reader antenna, (ii) we exploit polarization and non-uniform

gain values in the RFID reader and tags to achieve higher resolution

whereas Tagyro [36] only considers the impact of distance on the

phase, and (iii) we track general motion involving both rotation

and translation movement while [36] only tracks rotation.

Moreover, [19] tracks the 3D location and orientation of an ob-

ject using the polarization property of passive RFID tags. Our work

differs from [19] in several important aspects: i) we track an object

motion using a single reader antenna while [19] requires multiple

circularly polarized antennas, ii) we track both rotation and trans-

lation movement while [19] tracks the position and orientation of

a static object and requires more fine-grained initial calibration,

higher bandwidth, and more antennas, iii) we develop an analytical

model to enable rotation tracking without absolute localization.

[32] develops an interesting technique to improve RFID range.

Our work is orthogonal to improving RFID range, and can directly

benefit from other RFID systems with increased range.

3 MODEL FOR RFID SIGNAL

We develop a model to capture the impact of relative orientation of

the RFID reader and tag on the received signal due to polarization.

We borrow from existing literature to provide a general framework.
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3.1 Model of Received Signal Phase

We first examine how the movement affects the phase of the re-

ceived signal. Let 𝑟 denote the distance between the reader antenna

and tag. The signal traverses a total distance of 2𝑟 due to back

scattering. The received phase is determined by both the distance

and additional phase offsets introduced by the transmitter, tag,

and receiver circuits, denoted as \𝑇 , \𝑇𝐴𝐺 and \𝑅 , respectively.

The total phase change [2] at the reader is \ = ( 2𝜋
_

× 2𝑟 +
\𝑇 + \𝑇𝐴𝐺 + \𝑅 ) 𝑚𝑜𝑑 2𝜋 where _ is the wavelength. \𝑇 + \𝑅
can be expressed as polarization mismatch 2𝜙 (𝑟 ) or 2𝛾 . \𝑇𝐴𝐺 can

be expressed as 𝑎𝑟𝑔( 1

𝑍𝐴+𝑍𝐶 (𝑂𝐹𝐹 ) − 1

𝑍𝐴+𝑍𝐶 (𝑂𝑁 ) ). If we assume

𝑍𝐶 (𝑂𝐹𝐹 ) → ∞ (i.e., practically very large) [14, 27], it becomes

\ = ( 2𝜋
_

× 2𝑟 + 2𝛾 + 𝑎𝑟𝑔(− 1

𝑍𝐴+𝑍𝐶 (𝑂𝑁 ) ) ) 𝑚𝑜𝑑 2𝜋 .

If we measure frequently enough without phase wrap-around,

\ = 2𝜋
_

× 2𝑟 + 2𝛾 +𝐶 , where 𝐶 = 𝑎𝑟𝑔(− 1

𝑍𝐴+𝑍𝐶 (𝑂𝑁 ) ) is a constant.
𝛾 is the polarization mismatch angle between the reader and tag

antennas. For a linearly polarized RFID reader antenna and tag

directly facing each other (e.g., azimuth angle = 0), 𝛾 equals the

relative orientation (e.g.,𝛾 = 0when they are in parallel and𝛾 = 𝜋/2
when they are orthogonal). When the azimuth is non-zero, 𝛾 is the

sum of the relative orientation and azimuth [30, 31].

3.2 Received Signal Strength

Let the RFID reader antenna transmit at power 𝑃𝑡 . The transmission

power density 𝐷𝑡 [13, 18] of the tag at a distance 𝑟 is: 𝐷𝑡 (\𝑡 , 𝜙𝑡 ) =
𝑃𝑡𝐺𝑡 (\𝑡 ,𝜙𝑡 )

4𝜋𝑟 2
where 𝐺𝑡 (\𝑡 , 𝜙𝑡 ) is the directional gain of the reader

antenna, and \𝑡 and 𝜙𝑡 are polar measures in the reader antenna’s

coordinate system. The tag antenna’s intercepted power from this

dissipation is: P𝑡𝑎𝑔 = 𝐷𝑡 (\𝑡 , 𝜙𝑡 )𝐴𝑒 ,𝑤ℎ𝑒𝑟𝑒 A𝑒 is the effective area

of the tag antenna and expressed by

𝐺𝑡𝑎𝑔 ( ˆ\𝑡 , ˆ𝜙𝑡 )𝜌_2
4𝜋 , 𝐺𝑡𝑎𝑔 ( ˆ\𝑡 , ˆ𝜙𝑡 ) is

the directional gain of the tag antenna, _ is the wavelength of the

reader’s signal, and 𝜌 is the polarization loss factor,i.e, a function

of polarization mismatch between the reader and tag antennas.

When both the reader and tag antenna are linearly polarized,

the polarization loss factor (𝜌) can be expressed as 𝜌 = 𝑐𝑜𝑠2 (𝛾),
where 𝛾 is the polarization mismatch between the two antennas.

Using the free-space model, we get the received power (𝑃𝑟𝑒𝑐 ) as

follows [13, 18]:

𝑃𝑟𝑒𝑐 = 𝑃𝑡𝐺𝑡 (\𝑡 , 𝜙𝑡 )2𝐺𝑡𝑎𝑔 ( ˆ\𝑡 , ˆ𝜙𝑡 )2𝐾𝑐𝑜𝑠4 (𝛾) (
_

4𝜋𝑟
)4 (1)

where 𝐾 is the modulation loss of the tag antenna (the value is less

than 1) and depends on the impedance matching between the chip

and tag antenna. This indicates that

𝑃𝑟𝑒𝑐 ∝ 𝑃𝑡𝐺2

𝑡𝐺
2

𝑡𝑎𝑔𝑟
−4𝐾𝑐𝑜𝑠4 (𝛾) 1

𝑟4
(2)

To use our model, we derive the gain values of the tag and

reader antennas based on their relative geometric positions for

each position according to their data sheets.

3.3 Model Validation

Measured vs. modeled phase and RSS:We compare the model

with measurement from our RFID setup. Fig. 2 show the measured

and modeled phase during a rotation when the ball is rotating

around the following rotation axes: (0,0,30), (45, 0, 20), and (0, 60,

60). Figure 3 compares the measured and modeled RSS under the

same rotation axes. As we can see, different rotation axes tend

to have different phase and RSS patterns. This suggests that it is

potentially feasible to use the phase and RSS patterns to estimate

how the ball rotates. Moreover, our modeled phase and RSS closely

follow the measurement.
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Figure 2: Validation of Phase with different Rotation Axis

Configurations (Yaw, Pitch, Roll).
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Figure 3: Validation of RSSwith different RotationAxis Con-

figurations (Yaw, Pitch, Roll).

Modeling error: We further quantify the accuracy of our model

by collecting received signals over 200 different rotation axes at a

0.5m distance. We rotate the balls at least 5 times, and automatically

detect the start and end of the rotation as described in Sec. 4.1. We

align the measurement samples across different rotations using

correlation and compute the median across all rotations for each

sample. We compute the average difference between the samples

from our measurement with those from our model. The median

phase error is 0.1 radian and the median RSS error is 3 dBm.

Impact of multipath: We evaluate the impact of multipath by

collecting additional measurements in two ways: one without in-

tentionally adding multipath and one with intentionally adding

multipath by placing 5 wooden reflectors (1𝑚 × 1𝑚 large and 1𝑐𝑚

thick) wrapped with aluminum foil near the LoS path between the

tag and the reader antenna. Two reflectors are placed on each side

of the line connecting the tag and reader antenna and one reflec-

tor is placed behind the tag. The two configurations differ in their

angles intersecting the line between the tag and reader antenna.

Fig. 4(a) and Fig. 4(b) compare the modeled and measured phase and

RSS. As we can see, the modeled RSS and phase match well with

the measurement. The match is close even under multipath since

linearly polarized tags and reader antenna significantly weaken the

signals coming in other directions and limit multipath.

We also create dynamic multi-path situations: (i) by moving a

wooden barrier (1 m × 1m large, 5 cm thick) around intermittently

blocking the direct path between the tag and antenna, and (ii) by

moving the wood but avoid blocking the direct path between the

tag and antenna. Fig. 4(c) and Fig. 4(d) show that there is distortion

in the blocking scenario but the overall shapes remain similar.
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Figure 4: Measured vs. modeled phase and RSS under static

and dynamic multipath along the rotation axis (70,30,15).

4 TRACKING ALGORITHM

To track a ball, we attach multiple RFID tags to the ball. We de-

velop a tracking algorithm to estimate its translation and rotation

movement incrementally. For simplicity, in this paper we assume

an integer number of rotations. First, we consider the ball’s position

is fixed and known, and design an algorithm to estimate its rotation

axis and speed. Then we relax the assumption and estimate the

ball’s position in addition to its rotation axis and speed.

4.1 Estimate Rotation Axis and Speed
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Figure 5: Polarization and coordinate Systems of TIMU.

We use the setup shown in Fig. 5. We calculate the rotation axis

with respect to the ball’s coordinate system. We set the center of the

RFID antenna as the origin. We transform the ball coordinate using

proper rotation matrix multiplication and translation transforma-

tion. The azimuth defines the horizontal angle between the ball and

reader antenna, and the elevation defines the vertical angle between

the ball and reader antenna. We choose linear polarized reader and

tag antennas (i.e., the electric magnetic field is confined to a plane as

shown in Fig. 5) since it results in deterministic and distinguishable

phase and RSS patterns during rotation. Furthermore, as shown

in Fig. 5, we place multiple tags with different orientations with

respect to the polarization plane of the RFID reader antenna to

maximize diversity.

4.1.1 Estimate Rotation Axis. First, we consider how to estimate

the rotation axis. We observe different rotation axes result in dif-

ferent RSS and phase patterns during a rotation. Therefore we can

use the RSS and phase measurements from a rotation to infer the

rotation axis. In particular, we leverage the model in Section 3.

Problem formulation: Our goal is to search for the rotation axis

(\1, \2, \3) such that the resulting received signals best matches the

measured signals. We detect the start and end of a rotation based

on the periodic RSS pattern as described in Sec. 4.1.2. Let 𝑟 𝑖
𝑘
denote

the 𝑖-th measured received signal from tag 𝑘 during one rotation,

𝑁 denote the total number of samples we get from each tag in one

rotation, and𝑀 denote the total number of tags.

Given the ball size, position, rotation axis, and the number of

samples per rotation, we can derive the tag trajectory during a

rotation based on geometry. We uniformly sample the trajectory.

We need enough samples per rotation in order to get a detailed

RSS trace for estimating the rotation axis. We empirically evaluate

the impact of the number of samples per rotation on estimation

accuracy. For each position on the trajectory, we compute its phase

and RSS as described in Section 3 to get a complex signal. Let

𝑚𝑖
𝑘
(\1, \2, \3) denote the 𝑖-th received complex signal from tag 𝑘

during the rotation estimated using our model when the rotation

axis is (\1, \2, \3). Our goal is to search for the rotation axis that

minimizes the fitting error with the measured signals across tags:

𝑚𝑖𝑛\1,\2,\3

∑
𝑘

|𝑚𝑖
𝑘
(\1, \2, \3) − 𝑟 𝑖𝑘 | (3)

Signal alignment: This formulation assumes the modeled and

measured signals are properly synchronized. This is achieved by

computing the correlation between the two signals at all offsets

and finding the offset that yields a peak in the correlation.

Algorithm: The problem is challenging to solve since the objec-

tive is non-convex and has many local optimals. One option is to

perform binary search or hierarchical search. But it does not work

well since a local optimal may be surrounded by points that are far

away from the optimal. Another option is to generate profiles for

all possible rotation axes at a given granularity using our model and

exhaustively compare the measurement against all profiles from

our model. But this is expensive. If we resort to a coarse search

resolution to speed up the search, the accuracy would degrade. In-

stead, we formulate non-convex optimization and use fmincons() in

matlab to solve it. It is challenging to get a global optimal solution.

The optimization results are sensitive to the initialization. In order

to get a good solution, we need an initial solution that is not too

far away from the optimal.

To improve the speed and quality of the search, we develop two

strategies. First, we use a machine learning algorithm to find an

initial solution. We use deep neural network (DNN) as the machine

learning algorithm. The advantage of using a DNN is that it can

approximate any function with arbitrary accuracy. We use a fully

connected 4-layer DNN, which has 600, 500, 400, and 300 neurons

at the first, second, third, and fourth layers respectively. The DNN

maps the phase and RSS samples during one rotation to the 3D
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Figure 6: (a) Empirical Parameter Selection of a fully-

connected DNN for initialization. (b) CDF of Error using dif-

ferent initialization.

rotation axis. Following the common practice, we normalize the

inputs using ‘ReLu’ transfer function for hidden layers, and finish

with a single unit with a ‘sigmoid’ activation. The neural network

is trained using Adam optimizer, the learning rate of 0.0000001,

and the maximum iterations of 100000. We generate the training

data using a combination of measurement data and synthetic data

derived from our model. Our results show that the initial solution

derived from the DNN significantly improves the solution quality

and search speed. To finalize a specific architecture, we have tried

several other configurations. Fig. 6(a) shows the average error re-

duces initially as we increase the number of layers from 3 to 5, and

then tapers off.

To further improve the accuracy, instead of searching for a ro-

tation axis independently for each rotation, we further leverage

the temporal locality between consecutive rotations by generating

multiple initial solutions from injecting a small random noise to the

output from DNNs and feeding each of the perturbed initialization

to 𝑓𝑚𝑖𝑛𝑐𝑜𝑛𝑠 in Matlab. In this way, we obtain 𝐿 candidate solu-

tions for each rotation. We select the candidate solution from each

rotation to minimize the total difference between the consecutive

rotation axes to capture the temporal locality. To achieve this goal,

we construct a graph with 𝐿 × 𝑅 nodes (𝐿 nodes per rotation and

𝑅 rotations). We fully connect the nodes in rotation 𝑖 with those

in rotation 𝑖 + 1 with edge weights that represent the Euclidean

distance between their corresponding rotation axes. We find the

shortest path in the graph. The solutions to the nodes on the short-

est path are the final rotation axes. Our evaluation shows that 𝐿 = 5

and 𝑅 = 3 give good balance between the computation cost and

accuracy.

Figure 6(b) shows the CDF of estimation errors using random

initialization, DNN, and DNN with temporal locality. As we can see,

the median error decreases from 32.5 degree in random initializa-

tion to 9 degrees in DNN and to 5 degrees in DNN with temporal

locality. Furthermore, to observe the dependence of data collection

setup in our DNN initialization, we collect rotation axes data in

two locations. We use one for training and the other for estimating

and vice versa. As shown in Fig. 7a, If we use data from the same

location compared to different locations in training vs estimating,

the median error for angular estimation goes from 5.5 degree to 7.5

degree, as illustrated in Fig. 7a. The error does not increase signif-

icantly because the pattern remains similar for a certain rotation

axis due to the polarization property.

Multiple tags: This optimization can support multiple tags by

summing up the fitting errors across all tags. This helps to avoid
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the zones that have similar rotation templates and reduce error. To

balance the computation cost and accuracy, we use 3 tags. Fig. 7b

shows that using three tags can reduce the median estimation error

of the rotation axis from 15 degree to 5 degree.

We use aMacbook Pro running OS Sierra with a 8GBRAM, and i5

quad-core processor to process the data. It takes on average around

0.5 second to run the DNN based initialization and 1.5 seconds to

estimate the parameters of rotation with other related values.

4.1.2 Estimate Rotation Speed. As shown in Figure 8a, the received

signal strength (RSS) exhibits a periodic pattern as the ball rotates.

The RSS reaches a peak when the tag is parallel to the reader an-

tenna (e.g., their angles are at 0𝑜 , 180𝑜 , 360𝑜 ). The RSS reaches a

valley when the tag and reader antenna are perpendicular to each

other. By counting the number of peaks (or valleys), we can estimate

the number of rotations per minute (RPM).

4.1.3 Estimate Rotation Direction. Rotation can happen clock-wise

or counter-clockwise. For a given ball rotation axis and position,

these opposite rotations produce reverse templates as shown in

Fig. 8b. Therefore, given the starting position, we can analyze the

template pattern to infer the rotation direction.

4.2 Estimate Position Using a Single Antenna

In this section, we focus on estimating the ball position using a

single antenna (i.e., the angle of arrival (AoA) and distance from the

ball). Our AoA estimation requires the ball to rotate whereas the

distance tracking assumes the overall phase change is dominated

by the translation movement since we assume an integer number of

rotations.Wewill further integrate rotation and translation tracking

in Section 4.3.

4.2.1 Estimate AoA. Our algorithm: Existing approaches use an

antenna array to estimate the angle of arrival (AoA). We explore
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the feasibility of using a single RFID reader antenna to estimate the

AoA by exploiting the polarization and non-uniform gains of the

reader antenna and tag. We observe that AoA affects the phase and

RSS pattern during one rotation, therefore it is possible to use the

phase and RSS measurements in a rotation to infer the AoA along

with the rotation axis. We apply the same optimization framework

in Section 4.1 except that we now add two new unknowns: azimuth

and elevation. To improve the search for the rotation axis and AoA,

we use another DNN with the same structure as in Section 4.1

except that it has a 5-dimension output vector, which includes the

rotation axis, azimuth and elevation. As before, we find DNN based

initialization works much better than random initialization since it

uses the RSS and phase patterns to determine a good starting point.

The phase and RSS pattern during a rotation is not unique across
all possible AoAs and rotation axes. Therefore our scheme is best
effort and its performance improves as we use multiple tags with

different orientations and leverage temporal locality between con-

secutive rotations during matching.
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Figure 9: An example phase pattern of a ball with fast rota-

tion and slow translation movement.

4.2.2 Estimate Distance. We use the phase of the received signal

to estimate the distance. According to the previous phase model,

\ = 2𝜋
_

× 2𝑟 + 2𝛾 + 𝐶 . So we estimate the change in the distance

𝑟 based on the change in the phase \ . However, due to the phase

wrap-around, it only gives the relative distance change. In order to

estimate the absolute distance, we use multiple frequencies since

they significantly increase the wrap-around period due to Chi-

nese Remainder Theorem [37], which states that solution is unique

modulo to Least Common Multiple (LCM) of _1, _2, ..., _𝑛 (which is

much larger than a single frequency), where 𝑛 is the number of fre-

quencies. We use two frequencies: 865.7MHz and 867.5MHz, which

yields a wrap around period of around 250 ns. This corresponds to

around 75 m one way, which is large enough to avoid ambiguity in

our context. There is a random phase offset at the reader antenna.

To remove the random offset, following [29], we attach an auxiliary

tag to the RFID antenna and compute the difference between the

phase obtained from the target tag and auxiliary tag. We use the

phase difference between the two for distance estimation.

In practice, the commercial RFID reader can only transmit on one

frequency at a time. So it performs frequency hopping and uses the

two closest samples collected from the two frequencies to derive the

absolute distance. The only difference is that we should compensate

for the phase change arising from the samples collected at different

time. Since we can easily derive the phase change between the

previous two samples, we can use it to compensate for the phase

change due to different sampling time.

4.3 Supporting Simultaneous Rotation and

Translation

Next we study how to estimate both rotation and translation move-

ment at the same time. We observe that the total phase change is the

sum of the phase change due to rotation and translation movement.

As mentioned earlier, we assume an integer number of rotations,

and do not need to compensate the phase change caused by rotation.

We remove the impact of the translation movement on the phase

change and then estimate the rotation axis.

Based on the above observation, we integrate our rotation es-

timation in Section 4.1 with our translation motion estimation in

Section 4.2 to support both translation and rotation movement. Al-

gorithm 1 shows the pseudo code. Steps 1, 2, 5, and 6 are described

in Section 4.1 and Steps 3 and 7 are described in Section 4.2. In

step 4, we compensate for the phase change from the translation

movement by adjusting the phase of the 𝑖-th sample during a ro-

tation by the −Δ\ × 𝑖/𝑁 , where 𝑁 is the number of samples in a

rotation and Δ\ is the phase change during one rotation, which

is caused by the translation movement since a complete rotation

at a position should not change the phase. This assumes constant

translation movement during a rotation, which is likely to hold in

practice since the velocity tends to remain the same during a small

time interval.

Algorithm 1 Final algorithm

1: Estimate the rotation speed based on RSS (Section 4.1.2)

2: Estimate the start and end time of each rotation as the consec-

utive RSS peaks (Section 4.1.2)

3: Estimate the distance change and direction based on the phase

change of the received signal (Section 4.2.2)

4: Compensate for the phase change caused by the translation

movement

5: Use the phase and RSS time series from each rotation after

compensation to estimate the rotation axis, direction and AoA

for the rotation (Section 4.1.1 and Section 4.2.1)

6: Estimate rotation direction (Section 4.1.3)

5 EVALUATION

In this section, we first describe our evaluation setup and then

present the evaluation results.

5.1 Evaluation Setup

To perform controlled movement experiments and quantify the

accuracy of our tracking algorithm, we build a setup that allows us

to control the rotation axis, rotation speed, translation speed, and

direction as shown in Figure 10. In order to collect the ground truth,

we use a moving track [8] whose movement can be programmed

and controlled via a laptop using USB. The track is 2.5m long and

supports a moving speed from 1cm/s to 3m/s. To drive the motion

guide, we use a AMC430 controller [10], a motor driver, and a dedi-

cated power source. Furthermore, to support different rotational

axis configurations for evaluation, we 3D print a Goniometer [6]

as shown in Fig. 11. We place a RFID tag on the ball above the Go-

niometer. To create rotational motion, we use a Nema 34 motor [11]
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Figure 10: Experimental Setup of TIMU.

with a motor driver and power source [3]. This rotation motion is

controlled by Arduino [5], which is in turn connected to the laptop.

We vary the translation movement from 1cm/s to 3m/s and rotation

speed from 1rpm to 400rpm. Unless otherwise specified, we use a

15cm radius rubber ball in our experiments. We have used a solid

rubber ball of 15cm diameter in our experiments which is put at

different distances on the track. We also use a wooden cricket ball

and plastic ball, and observe similar result since these materials are

all non-electromagnetic and have little impact on the RFID tags. The

default translation speed, rotation speed, azimuth, elevation, Yaw,

Pitch, and Roll values are 10 cm/s, 60 RPM, 20 degree, 20 degree, 0

degree, 0 degree, and 45 degree, respectively. We further vary each

of these parameters to understand its impact.

We use a commodity Impinj RFID reader R420 [1], which is ETSI-

compliant. It can support frequencies from 865.7MHz to 867.5MHz.

We use a 9dBi linearly polarized (RHCP) RFID antenna to leverage

its polarization for motion tracking [9], and it is connected to one

of the RF ports on the reader. The antenna hops between these

two frequencies to estimate the absolute distance. The random

phase off-set due to frequency hopping has been resolved using an

auxiliary tag as described in [36].We use linearly polarized Alien

Squiggle RFID clear wet inlay (ALN-9740) tags [4], which are tuned

to work in 840 MHz to 960 Mhz (Global) for our experimental

purposes. We use the highest transmission power 32.5dBm. We

can achieve a sampling rate of around 200Hz for a single tag and

around 50Hz for three tags in our setup. For 3 tags, we put two tags

in parallel 90 degree apart and another tag on the other side in an

orthogonal orientation to this tag-pair. Unless otherwise specified,

we report the performance of 5 runs for each configuration using

error bars or CDFs. The center of the error-bar is the median and

its two ends correspond to 25-percentile and 75-percentile. We

perform all of the experiments in a typical lab with several furniture

(e.g., tables, chairs, desks, shelves) and desktops nearby. To reduce

noise in the data, we follow [36] to post-process the phase and RSS

measurements by computing the median over a sliding window of

20 samples. The reader sends query reports containing information

of ID, RSS, Phase, time-stamp, and channel, via Ethernet to a host

laptop. We implement TIMU using RFID library and processing

algorithms. We can read these tags with our linearly polarized

antenna from up to 10m in line-of-sight setting and up to 6m in

non-line-of-sight setting.

Linearly 
Polarized 
Antenna

3D Printed 
Goniometer

(a) 3D Printed Goniometer.

Rotation Axis

Changing  
Rotation Axis 
using 
Goniometer

Antenna

Rotation 
Direction

(b) Rotation Axis Change.

Figure 11: Rotation Setup for TIMU.

5.2 Evaluation Results

We first quantify the tracking accuracy of rotation axis, rotation

speed, distance, and AoA estimation. We then evaluate our algo-

rithm under general motion with rotation and translation.

5.2.1 Estimating Rotation. First, we track rotation movement with-

out translation motion. We fix the rotation axis in this experiment

and put the ball in a static position. We estimate the number of ro-

tations per minute (RPM) from the peak-counting of RSS patterns.

Estimating rotation speed: We use the periodic RSS change to

estimate the rotation speed. Figure 12 plots the rotation speed

estimation error as we vary the RPM, distance, rotation axis, and

Angle-of-arrival (AoA) (azimuth in this case). As we can see, in all

cases we can accurately estimate the rotation speed. Overall, the

error increases with the speed and distance as we would expect

due to false peak detection.Using an average of 3 tags reduces the

RPM error by 20 − 25% due to redundancy.

(a) Vary RPM (b) Vary distance

(c) Vary rotation axis (d) Vary AoA

Figure 12: Rotation Speed vs RPM error.

Estimating rotation axis: Next, we evaluate the rotation axis

estimation (i.e., the relative angle with each of the axes: Yaw (X),

Pitch(Y), and Roll(Z)). Figure 13(a) plots the error in estimating the

rotation axis as we vary the rotation speed. In this experiment, we

create 36 possible configurations by changing 𝑋 , 𝑌 , 𝑍 angles using

goniometer. As we can see, the errors in the rotation axis are similar

as we vary the rotation speed. Figure 13(a) shows that the errors in
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the three axes are around 5 degrees in all cases. Figure 13(b) shows

that the error increases with the distance due to reduced received

signal strength (RSS). Next, we separately vary the azimuth from 20

to 160 degree (20 degree apart), vary the elevation from 10 degree

to 70 degree (20 degree apart), and their combinations to generate

different 3𝐷 positions. As shown in Figure 13(c), the median error

is around 5 degrees when we vary only the azimuth or elevation

axis. When we vary both, the error increases to 6 degrees.

(a) Vary speed (1m) (b) Vary distance (80 RPM)

(c) Vary AoA (1m, 80 RPM)

Figure 13: Rotation axis error with 36 configurations.

5.2.2 Estimating Translation Distance. Next we consider the trans-
lation movement without rotation. Figure 14 compares the relative

distance change error when we move the ball on the guide with

translation movement at different speeds. We calculate the relative

distance change using the phase change in one frequency. Fig. 14(a)

shows the CDF of the distance estimation error as we vary the

speed. It shows the error tends to increase with the speed. Never-

theless, even at a high speed (e.g., over 0.5 m/s), the 90-percentile

error is within 2 cm over a 2.5m travel range. Next, we change

the azimuth from 20 degree to 150 degree while setting the ball

speed at 10 cm/s. Fig. 14(b) shows the impact of azimuth on the

distance estimation error is small. Next, we use two frequencies to
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Figure 14: Relative Distance Error using 1 Frequency.

estimate the absolute distance. Figure 15(a) compares the absolute

distance error when the ball is stationary, and shows that even at

different distances (up to 2m), the 90 percentile error is within 1.5

cm. Note that the duration of data collection should be longer than

the time that takes to get measurements from different frequencies

for absolute distance estimation. Figure 15(b) compares the absolute

distance error when the ball is moving at different speeds. As we

can see, the 90 percentile distance estimation error is within 2.5cm.
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Figure 15: Distance Estimation Error using 2 Frequencies.

5.2.3 Estimating Azimuth and Elevation. Next, we estimate the

azimuth (i.e., the relative 2D angle with the antenna) and elevation

(i.e., the relative angle with the orthogonal plane), while keeping

the other parameters the same. We change the azimuth from 20 to

160 degree (20 degree apart) and change the elevation 10 degree to

70 degree (20 degree apart), which cover 32 possible configurations.

Fig. 16(a) shows that the azimuth estimation error is within 6 degree

up to 2 m away when we change either the azimuth or elevation.

Fig. 16(b) shows that when we change the azimuth and elevation

together, our tracking achieves within 6.5 degree error at 1 m away.

Fig. 16(c) and Fig. 16(d) show that both 90-percentile azimuth and

elevation errors remain within 8 degree even if we vary the rotation

speed at a 1m distance, validating the effectiveness of our algorithm

for AoA tracking under different scenarios. As before, increasing

distance and speed increases the error due to lower SNR and fewer

samples during a rotation.
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Figure 16: Azimuth & Elevation Error.

5.2.4 EstimateMoving Direction. To estimate the rotation direction,

we change the rotation direction from 1m away by changing the

azimuth from 20 to 160 degree (20 degree apart) with 6 different

rotation axes. Using the same set of configurations, we move the
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ball from 2m distance toward and away from the RFID antenna to

estimate the translation. As shown in Fig. 17(a), we can estimate

the direction of translation movement with almost 100% accuracy

at different speeds. Moreover, Fig. 17(b) shows that we can estimate

the rotation direction accurately over 95% cases at a high rotation

speed. We miss some of the cases due to fewer samples and smaller

change during a rotation in some configurations.

(a) Translation Direction (b) Rotation Direction

Figure 17: Moving Direction Estimation.

5.2.5 Rotation and Translation Movement. We change the rotation

speed from 5 RPM to 100 RPM and the translation movement speed

from 1 cm/s to 100 cm/s. By varying the azimuth from 20 to 160

degree in 10 degree apart and the elevation from 10 to 70 degree

in 10 degree apart, and the rotation axes, we generate 64 possible

rotation axis configurations. As shown in Fig. 18(a), when both the

rotation and translation speeds are small, the 90 percentile error is

within 2cm; when both speeds increase, this error increases up to

6.5cm. Fig. 18(b) shows the 90 percentile RPM errors are around 2

and 4 for these two scenarios, respectively.
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Figure 18: Error inRotation&Translation Speed Estimation.

Fig. 19 shows CDFs of the azimuth and elevation estimation error

for a similar setup. As it shows, the 90 percentile estimation errors

increase to 6 and 7.5 degree, respectively.
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Figure 19: Error in Azimuth & Elevation Estimation.

Furthermore, Fig. 20(a) shows the estimation error of different

axes at different rotation and translation speeds. The median error

of rotation axis estimation is within 5 degree and the 90 percentile

error is within 7.5 degree. Fig. 20(b) further compares the estimation

error using our received signal model versus a simpler model that

only considers the impact of the distance as in Tagyro [36]. As we

can see, our algorithm yields much lower error: the median errors

is within 5 degrees in our case versus 40 degrees in the other case.
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Figure 20: Error in Rotation Axis Estimation.
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Figure 21: Performance in Non-line-of-sight (NLoS) setting
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Figure 22: Environment 1 and Environment 2 differ in rela-

tive locations of the furniture and desktops in the lab.

Impact of blockage and multipath: We create a blockage by

putting a wooden barrier (1 m × 1m large, 5 cm thick) in front of the

reader antenna. We perform a subset of the previous experiments

involving both rotation and translation. Fig. 21(a) shows that error

increases within 10%. Blockage does not significantly increases the

error since RFID signal can penetrate through the obstacle.
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Next, we introduce static multipath by placing 5 wooden reflec-

tors wrapped with aluminum foil in the same way as the multipath

experiments in Section 3.3. As shown in Fig. 21(b), the rotation axis

and relative angle error are within 8 degree in both configurations.

Moreover, the distance estimation and rotation speed estimation

error remain small: within 3cm and 4 RPM, respectively.

To further evaluate the impact of multipath, we create dynamic

multipath by moving the same wood barrier randomly between

the tag and reader antenna (blocking) or near the tag and reader

antenna (non-blocking). As shown in Fig. 22(a), the errors under

dynamic multipath with and without blocking are 20% and 8-10%

higher than in the normal setting (i.e., LoS without dynamic mul-

tipath), respectively. Dynamic multipath increase errors in both

cases. Blocking has higher errors due to reduced RSS. Nevertheless,

the errors in both cases are low since the general trends under

dynamic multipath remain similar as shown in Fig. 4(c) and (d).

We further evaluate the performance in two locations – a lab

and a conference room when the calibration is performed in the

lab. Fig. 22(b) shows that the errors are similar, which indicates the

scheme is fairly robust to the environment change.

6 CONCLUSION

In this paper, we design a passive RFID-tag based motion sensing

system for a moving ball using a single commercial-off-the-shelf

antenna. To our knowledge, it is the first battery-free sensing sys-
tem that uses a single RFID reader antenna to sense general motion.

This is achieved by leveraging the polarization and non-uniform

antenna gains in the passive RFID system. Our system can accu-

rately estimate the rotation and translation motion of a moving

ball. As part of our future work, we are interested in applying our

approach to sports analytics.
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