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ABSTRACT

Smartphones are becoming truly ubiquitous devices [33] on which peo-
ple connect, collaborate, and perform various operations using different
context-aware applications. Users’ location information is one of the most
important requirements of this context awareness. There has been a
huge surge of location-aware apps in smartphone app space [56], e.g.,
Foursquare [7], Google Navigation etc.. Efficient deployment of these
location-aware apps requires accurate micro-level identification of loca-
tions. In this thesis, we solve this problem by using the concept of virtual
landmarks [71, 79]. The concept behind virtual landmark is the following.
Due to the availability of the embedded sensors (accelerometer, gravity,
gyroscope, magnetometer), the smartphones have the ability to recognize
the ambience and behavior of users. Consequently, the smartphones can
listen to the distinguishable environmental signatures to identify a given
location. The places might be a corner of a corridor, a GSM blind spot or
a specific Wi-Fi zone. In this thesis, we specifically build up a framework
to discover such virtual landmarks and demonstrate its utility in the devel-
opment of next generation apps. We rigorously test the stability of these
virtual landmarks across different devices, people, and time. As a proof
of concept, we develop a prototype system RetailGuide using landmarks
to facilitate smart retail analytics cum recommendation service.

However, despite the exponential growth of the app market [59], their
utility has been restricted by the constraint of limited battery life of smart-
phones [58]. Cellular radio interfaces on smartphones consume significant
amount of energy, aided by growing number of network centric apps.
Low utilization of radio resource contributes to higher energy wastage.
High speed cellular access links push the bottleneck to the network core
risking poor bandwidth utilization of the access link. In addition, small
sized packet transmission from different apps leads to waking the inter-
face frequently. In this thesis, we improve the radio usage by aggregating
packet transmission from multiple applications. We distinguish between
foreground and background apps to introduce differential time delays in
transmission such that user experience is minimally impacted. We pro-
pose three online packet scheduling techniques, and show the benefits of
the methods on different application categories through simulation and
real experiments. In summary, the thesis sheds light on the ways to
improve localization and cellular resource consumption in smartphone
through novel ideas and real world deployments.
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Chapter 1

Introduction

Mobile devices such as smartphones provide significant convenience and capa-

bility to the users. A recent market analysis [33] shows that the smartphone

market is the fastest growing segment of the mobile phone market; by the end

of 2013, 6% of the global population own a tablet, 20% own a PC, and 22% own

a smartphone, i.e., one in every five people in the world now carries a smart-

phone [61]. Smartphone runs OS which provides full-fledged app development

platform, and coupled with exotic components such as Camera and GPS, have

unleashed the imagination of app developers. According to a new report [59], the

app market will explode exponentially to a 38 billion industry by 2015, riding

the huge growth in popularity of smartphones. Moreover, most of these smart-

phone apps differ distinctively from their desktop counterparts, by being more

context-aware. Hence, there has been a huge surge of these context-aware apps

in smartphone app space [56], e.g., Foursquare, Google Navigation, Noom etc..

Particularly we find that, users’ accurate location information is one of the most

important features of this context awareness.

In spite of the increasing popularity of these kinds of location-centric apps, lo-

cation services currently provided by the state-of-the-art smartphones are not

quite good enough both in terms of accuracy and energy usage. Different GPS

aided techniques [75, 80] have partly solved the problem, but the energy cost

is high. Most importantly, for the case of indoor localization, it fails miserably

[43, 66, 34, 65]. There have been different infrastructure based efforts [32, 73, 81]

1



2 Chapter 1 Introduction

to solve the problem, but again extra expenditure for these kinds of deploy-

ments actually inhibit wide-spread adoption [74]. However, current generation

of smartphones are equipped with different kinds of sensors like gyroscope, ac-

celerometer, magnetometer etc. These sensors can listen to different sensory

signature of the environment and can track users’ movement via dead-reckoning

with a very low energy footprint [19, 79]. If we can map these signatures to the

corresponding locations, then these can act as virtual landmarks understood by

the smartphones. However, the heterogeneity of different smartphone hardware

and softwares can not guarantee the identification of these kinds of landmarks

across different settings. To be universally effective, such virtual landmarks need

to exist across various devices as well as people using those devices. This unique

sensor-aided technique of location tracking by building smartphone sensor based

virtual landmark database can benefit both indoor and outdoor localization.

On the other hand, despite the incredible market penetration of smartphones

and exponential growth of the app market, their utility again has been restricted

by the constraint of limited battery life. As such, optimizing the energy con-

sumption of millions of smartphone apps is of critical importance. However, the

quarter million apps developed so far are largely developed in an energy obliv-

ious manner. Poorly written apps can sap 30% to 40% of a phone’s battery

[58]. Battery lifetime is a common cause of frustration among smartphone users.

However, smartphone data traffic has been growing steadily due to the increas-

ing popularity of cloud based applications [48]. As the adoption of cloud based

services grows, the data traffic from smartphones will keep rising. A majority

of these cloud based apps [48], like mailing, online storage, or social network-

ing apps, run as background services, whereby the application thread wakes up

intermittently to synchronize with the server.

Unnecessary long stay of cellular radio at high energy state is one of the main

reasons behind this significant energy depletion in smartphones [58]. This hap-

pens because the different background services run continuously and frequently

wake up the network card [77] leading to high energy usage. As the different

services are independent of each other, they are generally not in-sync and under-

utilizes the available network bandwidth by wasting ramp-up energy1 and tail

1Ramp-up energy is the energy cost for radio to jump to a high-power state from idle state.
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energy2 [20]. Interestingly, it is observed [77] that, most of the cases network

radio goes into the highest energy state to serve only one or two apps and thus a

considerable amount of energy is wasted. Reducing tail time energy wastage has

been addressed primarily by (a) dynamic adjustment of the tail time timer by

observing traffic patterns [51, 70], and (b) using the tail time for transmissions

[20, 55]. In order to fill the tail time with transmissions, the classical approach is

to aggregate packets from a single application either by delaying packets [21], or

reorganizing computation and communication leading to higher batch efficiency

[82, 87].

However, if we can aggregate different network requests across multiple appli-

cations intelligently, we can significantly save the duration of cellular radio at

high energy state, without losing significant ramp up or tail energy due to fre-

quent switching of states. This methodology of saving energy is hinted by Falaki

et. al. [40] and partially tackled by Yong Cui et. al. [84] in variable wireless

bandwidth settings. The challenge is that in this process of energy saving via

optimizing cellular radio usage, we should not degrade the user experience of the

apps. Higher packet aggregation across applications requires that requests from

different apps may need to be delayed to synchronize the transmissions. The

delay limit for an app is calculated based on the user’s interaction with the app,

i.e. a measure of user experience. Proposing different delay-aware algorithms to

address the trade-off of energy saving vis-a-vis user experience, is non-trivial.

Hence, if we want to look at our solutions for improving efficiency of smartphone

applications at a broader perspective, we are actually trying to improve the

smartphone performance from two different ways (1) application level, and (2)

kernel level. Application level efficiency is achieved through identifying smart-

phone sensor based landmarks and kernel level efficiency is achieved through

devising smart network packet scheduler which will reside in a middle-ware.

2Tail energy is the energy wastage incurred during the period of time, i.e. tail time, when

radio remains in high-power state after a communication session has ended.



4 Chapter 1 Introduction

1.1 Differences with other Related Works

The idea of landmark for navigation or localization is pretty old [29, 52, 78]. Due

to low accuracy (∼10m) in some outdoor scenarios [6], unavailability in indoor

scenarios and high power consumption, GPS is far from the ideal. Interestingly,

this motivated researchers to revisit the idea of landmarks for localization. We

can find the essence of landmarks in recent localization works which are based on

ambience signature. Some of the recent localization or place recognition systems

have been EZ localization [32], GSM signal fingerprinting [16], Surroundsense

[19], RF based techniques [81] and Wi-Fi based schemes [73]. Moreover, a few

works augment urban dead-reckoning [85] to improve indoor localization using

mechanical sensors like accelerometer and gyroscope. Although distinguishing

signature is the core of any landmark, landmark can be more than a vector of

signatures. This idea of landmark for simultaneously localizing object is first

explored by robotics community through the works of SLAM [38]. However,

they are concerned about finding visible landmarks through costly sensors. Their

goal was appeased easily as the mechanical movement of robots help them to do

precise dead reckoning. However, the concept of invisible landmarks through the

cheap smartphone sensors are brought forward by the authors of UnLoc [79].

They, like us, use different sensor signature to form landmarks which provide

regular check points and helps in reducing the localization error. But, they

are only confined to the localization problem for their experiments and also

silent about the impact of heterogeneity on this kind of system. This work has

broadened the horizon by exploring different interesting implementation avenues

like retail, and showed through a set of experiments that we can find a set of

stable landmarks in spite of the heterogeneity. We have also developed prototype

apps to demonstrate the usability of stable virtual landmarks.

On the other hand, conserving cellular network card energy has focused pri-

marily on two techniques - tail time adaptation, and traffic aggregation. The

design of Tail Optimization Protocol (TOP) by Qian et al. [70] leverages the

Fast Dormancy feature and usage pattern to predict long idle periods when the

card can be immediately switched off, thereby eliminating any tail time wastage

[70]. A further generalized approach for predicting network idle time is proposed
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by Kim et al. [51]. Further optimization are introduced by better utilization

of cellular bandwidth in Bartendr [72] and LoadSense [30], where free channel

time and gateway server load is used to trigger transmissions. However, a series

of work, starting with Tailender, has observed that utilizing the low bandwidth

channel during tail time for transmission can significantly save energy. Tailender

showed that by clubbing traffic one can reduce energy by 35% for email applica-

tions, 52% for news feeds and 40% for web search [20]. Techniques for batching

periodic jobs [68] are proposed in [27]. TailTheft [55] uses the tail time for pre-

fetching and delayed transfers, showing the energy benefits if we adjust the tail

timer according to application behavior.

Going beyond single app scheduling, in this work, we show that significant energy

savings can be achieved by scheduling packets across apps. For a multi-tasking

smartphone user this is a natural usage behavior. We also show that even in

presence of small packet sizes, significant energy savings can be gained. Our work

also takes into account the typical multi-tasking behavior of smartphone users,

and considers the method to ensure user satisfaction by minimally disrupting

foreground job.

1.2 Objectives of the thesis

The objective of the thesis is to propose two different work items related to

improving the location accuracy and energy usage of smartphones respectively.

This will in turn improve the efficiency of current smartphone applications, by

making them efficient in terms of context-awareness and energy saving.

• Efficient Localization in Smartphones: The first study shows that local-

ization can be improved using different embedded sensors in smartphones

which can detect environmental signatures. We describe a methodology

to detect smartphone sensor based virtual landmarks using adaptive clus-

tering algorithm and validate its accuracy in the indoor and the outdoor

scenario.

• Energy Efficient Cellular Radio Usage in Smartphones: The second prob-

lem focuses on solving the problem of energy drain in cellular radio due
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to running background processes, by intelligent scheduling of different con-

current resource requests. Our goal here is to maximize the radio resource

utilization, which in turn will reduce tail energy wastage, by aggregating

packets across multiple apps in a smartphone, without hampering the user

experience.

• Developing prototypes as proof of concepts : To validate the efficacy of

virtual landmarks in localization, we have developed a retail app called

RetailGuide and a virtual sign creator app called SignFinder. On the other

hand, we have also collected network usage traces in smartphone to show

that our algorithms provide satisfactory energy savings in the real world.

1.3 Contributions of the thesis

Considering the broad objectives stated in the previous section, the particular

contributions of the thesis are detailed as follows.

(1) Improving localization efficiency in smartphone apps via virtual

landmarks

Landmarks are made of distinguishable unique features, which differentiate

themselves from the immediate surroundings. Recent research works reveal that

like us humans, it is actually possible by the sensors on smartphones to identify

landmarks [71, 79]. This can create the possibility of applications in the areas of

location based social networks, augmented reality, gaming, retail etc. However,

to make such applications a reality, a particular landmark need to be stable

across mobile phones as well as users carrying those mobile phones etc.

We specifically build up a framework to discover such stable landmarks and

demonstrate its utility in the development of next generation apps. In order

to identify such virtual landmarks, we employ a clustering algorithm to per-

form non-intuitive feature combination of sensors like Accelerometer, Gyroscope,

Magnetometer, Light, Sound, Wi-Fi, GSM signal strength etc. We describe a

methodology to detect these virtual landmarks using adaptive clustering algo-

rithm which is similar to the scheme proposed in [79] and validate its accuracy in
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both indoor and outdoor scenarios. We perform extensive experimental studies

with our developed android applications on Samsung smartphones to understand

the internal dynamics of the stability of these virtual landmarks and its depen-

dence on different parameters like devices, time, and persons.

As a proof of concept, we developed a prototype system RetailGuide using land-

marks to facilitate smart retail analytics cum recommendation service. We also

did detailed experiments in the corridors of department building, a outdoor mar-

ket area, and a nearby retail store, and showed that RetailGuide app works with

high accuracy and robustness, both indoor and outdoor. Moreover, to demon-

strate the importance of this concept of landmarks in smartphone app space, we

have shown two use cases in automatic creation of virtual signboards for giving

directions to locations of interest and localization in post disaster situations for

rapid rescue operations.

(2) Reducing cellular radio energy consumption via aggregation of

network packets across smartphone applications

Cellular radio interfaces on smartphones consume significant amount of en-

ergy. Growing number of network centric apps has led to active research looking

for energy efficient solutions in managing the radio resource. Low utilization of

radio resource contributes to higher energy wastage. High speed cellular access

links push the bottleneck to the network core risking poor bandwidth utilization

of the access link. In addition, small sized packet transmission from different

apps leads to frequent activation of the interface. Here, we improve the radio

usage by aggregating packet transmission from multiple applications. We dis-

tinguish between foreground and background apps to introduce differential time

delays in transmission such that the user experience is minimally impacted. We

propose three online packet scheduling techniques, and show the impact of the

methods on different application categories. Simulation driven experiments using

synthetic trace show energy gain of 40% over earlier works, while experiments

using trace data gathered from real usage show 10% improvement.
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1.4 Organization of the thesis

The rest of the thesis is organized as follows:

In Chapter 2, we present a detailed literature survey of the related works on

the aspects of localization and energy in smartphone applications.

Chapter 3 points out the problem of localization in smartphone applications

and discusses the concept of smartphone sensor based landmarks to solve this

issue. We also elaborate the details of localization centric android applications,

namely, RetailGuide and SignFinder, using this concept of virtual landmarks,

which are developed and thoroughly tested in different scenarios by us.

Chapter 4 investigates the problem of energy wastage in cellular radio of smart-

phone applications and proposes a practical solution to enable aggregation of

network packets across multiple applications to counter the problem.

Finally, Chapter 5 concludes the thesis by summarizing the contributions and

indicating a few issues for future work that have been opened up from the studies

in this thesis.



Chapter 2

Literature Survey

As reported in the previous chapter, the main contribution of this thesis is to

improve the localization techniques and cellular resource consumption techniques

of current smartphone applications. In this chapter, we present a comprehensive

survey of the various works done in the field of localization using smartphones

and cellular radio energy reduction strategies. The organization of the survey

is as follows. First, we state several limitations affecting the current generation

of smartphone applications. Specifically, we try to highlight the problems of

inefficient localization and cellular energy wastage. We then briefly review dif-

ferent kinds of state-of-the-art localization strategies used in smartphones with

their corresponding benefits and limitations. Following this, we present a brief

description of cellular radio energy model and finally arrive at a detailed descrip-

tion of different network energy reduction strategies adopted for smartphone

applications. Moreover, apart from focusing on the related studies, we also try

to put forward the intuition and implication of our proposed solutions towards

improving the performance of current smartphone applications.

2.1 Problems in Smartphone Applications

The smartphone is to the 2010s as the Internet was to the 1990s and 2000s.

The increasing popularity of smartphones with their sensing capability and the

availability of application distribution channels, such as, the Apple AppStore [3]

9
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and the Google Play [10], is giving both researchers and developers a unique

opportunity to deploy mobile applications at an unprecedented scale. As of July

2013, the Google Play store has officially published over one million apps and

there has been over 50 billion downloads [11]. So, smartphone app industry is

growing rapidly and expected to become a 40 billion dollar industry by 2015.

However, there are certain roadblocks which need to be tackled to attain such

growth. In the following, we are enumerating a few of these.

1. Energy: Battery life of current generation of smartphones is one of pressing

problems limiting its wide-spread adoption [58]. Even a smartphone having 1500

mAh battery can last only upto 6 hours [63] if used continuously. Surprisingly,

thousand of apps currently in the app market space do not take care of this issue

and can contribute for energy loss upto 40% [63]. Recent surveys [13] show that

users are very conscious about the energy usage of a particular app and several

battery saver apps like Battery Doctor, DU Battery Saver etc. are helping them.

So, energy footprint of any app has become a good indicator of the popularity of

an app. Therefore, both researchers and developers are trying to develop many

tools and strategies [17, 58] to address the energy problem in smartphones.

2. Privacy and Security: In this age of identity thefts [8] and surveillance

[12], privacy and security concerns are gaining importance. Users invariably leak

many sensitive information to the third party apps and sometimes a few rogue

apps [5] take advantage of that. However, most of the times apps need coarse

information of users’ activity to provide more personalized experience, e.g., a

restaurant finder app gives location and interest specific recommendations or

a music app automatically selects songs according to the mood. So, there is a

trade-off between misuse leading to identity theft and proper usage for improving

user experience. Researchers [15, 44] have attempted to strike this balance, but

no single solution is able to catch the imagination of all.

3. Location Sensing: Context awareness is the main reason for the transfor-

mation of a mobile phone into a smartphone. Apart from the user’s activities in

smartphone, location of the user also plays important part for defining the con-

text. So, smartphone makers or smartphone OS developers always have given

importance to location sensing. GPS and cellular tower triangulation are the

traditional solutions. But, due to huge energy drain coupled with absence of
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required accuracy [28] in these methods, location sensing has become a major

problem. Most importantly, as indoor localization is becoming an indispensable

part of current generation of smartphone applications, the need for alternative

lightweight solution has become more urgent.

4. Scalability and Adaptability : Smartphone applications are also troubled

by traditional issues like scalability and adaptability. The problem is more acute

due to resource shortage and huge heterogeneity in OS or screen sizes like never

before [24]. Recent breakdowns in popular apps like WhatsApp [14] or BBM [4],

have actually established this issue. Both researchers and developers are trying

to find different solutions for this pressing problem of smartphone applications.

Apart from the above issues, there are also many more problems affecting cur-

rent generation of smartphone applications. However, in this thesis, the focus is

mainly on the problems of location sensing and energy in smartphone applica-

tions. Moreover, we mainly tackle the problem of energy wastage due to network

usage, which is the second most important reason of energy depletion in smart-

phones [28]. In the following sections, we will describe different related studies

in these fields.

2.2 Different Localization Techniques

After the transformation of cellphone to a smartphone, a phone has become

more than a mere calling device. Locating oneself in unknown places or finding

route to a specific destination has been one of the important needs of the users.

For this reason, smartphone based localization has caught the attention of both

developers and researchers from very early days. Following are the two main

classes of localization techniques in today’s smartphone.

1. Outdoor Localization Techniques : For navigation purposes in unknown

places, GPS chip was introduced in the smartphone. GPS uses signals from four

revolving satellites to triangulate the location and works reasonably well in gen-

eral outdoor situations [6]. However, it suffers terribly in dense building area due

to multi-path effect [6] and causes almost 20m error in localization. Moreover,

in smartphones, it also suffers from signal receiving problem and has very high
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energy footprint [28]. Due to these limitations, cellular or wireless tower based

triangulation [83] has become popular. Although it has lesser energy footprint

than GPS, this technique suffers from an error around 100m. However, in some

other cases, a smartphone OS gives options to users to choose among these two

techniques keeping in mind their requirement [2]. Moreover, researchers also

tried different avenues to reduce the usage of GPS for localization through as-

sisted GPS based system [80], where GPS readings are taken periodically without

degrading the accuracy significantly. Some people also attempted to propose a

collaborative system where neighboring users transfer GPS information among

them for localization to reduce redundant queries and in turn the overall energy

consumption [75]. In assisted GPS mechanism, researchers also proposed the use

of embedded sensors like accelerometer or gyroscope for finding direction or path

traversed by the user which helps in localization [19]. However, these types of

collaborative or assisted methods although look good in theoretical perspective

but fail in practical scenarios due to unavailability of peers or good trade-off

metric of performance and energy.

2. Indoor Localization Techniques : Due to unavailability of proper signals

of GPS satellites or cell tower, in indoor scenario most of the discussed outdoor

localization techniques fail miserably [6]. In general, some of the methods take

help of infrastructure or peculiar signal variation to localize people indoors. Both

researchers and developers have tried to propose different methods of indoor

localization which will help different applications. For example, EZ localization

[32] scheme uses Wi-Fi RSSI to efficiently localize, whereas [67, 81] utilize location

beacons and receivers for indoor localization; [16] uses GSM signal or [31] uses

FM radio signal for fingerprinting and locating users. RF based or Wi-Fi or FM

based schemes either suffer from infrastructure dependence or high calibration

time, while localizing people with corresponding places. Moreover, researchers

have tried to propose ambiance signature based indoor localization techniques.

Surroundsense [19] uses the characteristics of places to identify location. A few

works augment urban dead-reckoning [85] to improve indoor localization using

mechanical sensors like accelerometer and gyroscope. These systems although

depend upon the signature of surroundings, they do not explicitly bring the

concept of landmark, which is the main idea of our solution.

In this thesis, although we mainly concentrate on smartphone based human local-
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ization, it is necessary to briefly introduce the idea of Simultaneous Localization

and Mapping (SLAM) idea in this context. The necessity stems from the is-

sue that our idea of landmark based localization is certainly similar to SLAM

but completely different. SLAM is a highly popular and successful technique in

robotics, which allows a robot to simultaneously discover landmarks and build

a map-representation of an indoor environment [60]. However, SLAM typically

depends on using explicit environment sensors, such as laser range finders and

cameras. Moreover, the rotation of the robot wheels offer a precise computation

of displacement [39]. To localize and create maps, statistical techniques are used

to approximate using Kalman filters, particle filters and scan matching of range

data. They provide an estimation of the posterior probability function for the

pose of the robot and for the parameters of the map [49, 50]. Unlike SLAM,

our idea uses smartphone sensors to compute the displacement and direction of

users; the landmarks are essentially ambient signatures or user-activities.

2.3 Landmarks and their use in Localization

The idea of landmark for navigation or localization is pretty ancient. From

the pole star guiding the sailors to helping out today’s busy teens to find the

common meeting place, landmarks have always been an integral part of our

daily life. Moreover, migratory birds find their winter abode [78], desert ants

find their food [26], or honey bee tracks back their way back to home [29] using

spatio-temporal landmarks. Even human minds keep track of some routes or

places in terms of landmark maps [52]. We combine this idea of landmark of

the environmental signatures that can be identified by the embedded sensors of

smartphone, which we call as virtual landmarks. The idea of virtual landmark has

been introduced [79], where a sensory signature cluster of a particular location

can be identified by smartphone sensors. The concept behind virtual landmark

is the following. Due to the availability of the embedded sensors (accelerometer,

gravity, gyroscope, magnetometer), the smartphones have the ability to recognize

the ambiance and behavior of users. Consequently, the smartphones can listen

to the distinguishable environmental signatures to identify a given location. The

places might be a corner of a corridor, a GSM blind spot or a specific Wi-Fi

zone.
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Although distinguishing signature is the core of any landmark, landmark can be

more than a vector of signatures. This idea of landmark for simultaneously local-

izing object is first explored by robotics community through the works of SLAM

[38]. However, they are concerned about finding visible landmarks through costly

sensors. Their goal was achieved easily as the mechanical movement of robots

help them to do precise dead reckoning. In this work, we use different sensor sig-

nature to form landmarks to provide regular location fixes. We are not confined

to indoor localization for our experiments, and have also considered the impact

of heterogeneity on this kind of system. Our work has broadened the horizon

of applications of localization by exploring different interesting implementation

avenues like retail, and showed through a set of experiments that we can find a

set of stable landmarks in spite of the heterogeneity.

Next, before discussing the works related to efforts directed towards smartphone

energy usage reduction, we present a background of cellular architecture and

energy model of smartphones.

2.4 Background of Cellular Systems

3G cellular data networks have recently witnessed a rapid growth, especially due

to the emergence of smartphones. In this work, we focus on the UMTS (the

Universal Mobile Telecommunications System) 3G network, which is among the

most popular 3G mobile communication technologies [1]. Compared to Wi-Fi,

3G systems operate under more radio resource constraints. To efficiently utilize

the limited radio resources, UMTS introduces for each user equipment (UE, i.e.,

a smartphone) a radio resource control (RRC) state machine that determines

radio resource usage affecting device energy consumption and user experience.

Following are the brief descriptions of 3G UMTS architecture and 3G RRC

energy model.
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2.4.1 UMTS Architecture

As illustrated in Figure 2.1, the UMTS network consists of three subsystems:

User Equipments (UE), UMTS Terrestrial Radio Access Network (UTRAN), and

the Core Network(CN). UEs are essentially smartphones carried by the users.

The UTRAN provides connectivity between a UE and the CN. It consists of

two components: base stations, called Node-Bs, and Radio Network Controllers

(RNC), which control multiple Node-Bs. Most UTRAN features such as packet

scheduling, radio resource control, and handover control are implemented at the

RNC. The centralized CN is the backbone of the cellular network. In particular

the GGSN (Gateway GPRS Support Node) within the CN serves as a gateway

hiding UMTS internal infrastructures from the external network.

Figure 2.1: The UMTS Architecture

2.4.2 UMTS 3G Network Model

In the context of UMTS, the radio resource refers to WCDMA codes that are

potential bottleneck resources of the network. To efficiently utilize the limited

radio resources, the UMTS radio resource control (RRC) protocol introduces a

state machine associated with each UE. There are typically three RRC states as

described below and as shown in Figure 2.2.

IDLE. This is the default state when a UE is turned on. The UE has not yet
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established an RRC connection with the RNC, thus no radio resource is allocated,

and the UE cannot transfer any user data (as opposed to control data). So, in

this state, no bandwidth is allocated as well as no power is used.

Figure 2.2: 3G Energy State Diagram

CELL DCH. The RRC connection is established and a UE is usually allocated

dedicated transport channels in both downlink (DL, RNC to UE) and uplink

(UL, UE to RNC) direction. This state allows a UE to fully utilize radio re-

sources for user data transmission. A UE can access HSDPA/HSUPA (High

Speed Downlink/Uplink Packet Access) mode, if supported by the infrastruc-

ture, at CELL DCH state. CELL DCH is the high throughput state where

packets are transmitted and it consumes around 800 mW power, as shown in

Figure 2.2.

CELL FACH. The RRC connection is established but there is no dedicated

channel allocated to a UE. Instead, the UE can only transmit user data through

shared low-speed channels that are typically less than 15kbps. CELL FACH

consumes much less radio resources than CELL DCH does. CELL FACH con-

sumes around 460 mW power for its operation and requires low data throughput.

In the 3G state machine, there are two types of state transitions. S tate pro-

motions and S tate demotions. S tate promotions are IDLE → CELL DCH,

CELL FACH → CELL DCH, and IDLE → CELL FACH where switching

is done from a state with lower radio resource to higher radio resource. However,

S tate demotions are CELL DCH → IDLE, CELL DCH → CELL FACH,
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and CELL FACH → IDLE which works in the reverse direction. The energy

consumed in these state transitions are directly proportional to the energy differ-

ence between state, e.g., CELL FACH → IDLE is energy wise cheaper than

CELL DCH → IDLE transition.

2.4.3 UMTS 3G Energy Model

We model the energy consumption using the UMTS three-state (CELL DCH,

CELL FACH, IDLE) 3G network card operating model and corresponding en-

ergy values for state transitions [18] illustrated in the Figure 2.2. For calculating

energy usage in 3G card, we consider the equation, Total Energy Consumption =

CR +CD +CT , where CR is the ramp up energy (IDLE to CELL DCH), CD is

the data transmission energy, and CT is the tail energy (in CELL FACH) [18].

CD consists of two parts, namely actual data transmission energy (CB) and data-

transferring state (in CELL DCH) maintenance energy (CM). From [20, 69],

we have taken the corresponding values: CR = 3.5 J, CT = 0.62t J, CB = 0.25x

J, and CM = 0.8 J, where x denotes the amount of Kilobyte transferred and t is

the time spent at CELL FACH state due to tail time.

2.5 Reduction of Cellular Radio Energy

To reduce overall energy consumption in smartphones, energy wastage in cellular

connectivity is an important step [28]. Prior works on conserving 3G network

card energy have focused primarily on two techniques - tail time minimization,

and traffic aggregation. Following are the detailed description of the strategies.

Radio Tail Time Minimization Strategies: The design of Tail Optimiza-

tion Protocol (TOP) by Qian et al. [70] leverages the Fast Dormancy feature1

and usage pattern to predict long idle periods when the card can be immediately

switched off, thereby eliminating any tail time wastage [70]. A further general-

ized approach for predicting network idle time is proposed by Kim et al. [51].

1In UMTS, Fast Dormancy is a mechanism for a handset to notify the cellular radio for

immediate radio resource release.
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RadioJockey analyzes program behavior to determine communication spurts to

enable faster switch off [17]. Further optimization are introduced by better uti-

lization of cellular bandwidth in Bartendr [72] and LoadSense [30], where free

channel time and gateway server load is used to trigger transmissions.

Traffic Aggregation Strategies: A series of work, starting with Tailender,

has observed that utilizing the low bandwidth channel during tail time for trans-

mission can significantly save energy. Tailender showed that by clubbing traffic

one can reduce energy by 35% for email applications, 52% for news feeds and

40% for web search [20]. Xu et al. focuses on the behavior of email applications

on smartphones, and proposes techniques to reduce energy cost of email sync by

50% [82]. Background jobs on smartphones lead to unnecessary wakeup of 3G

radio, and often these jobs are periodic in nature [68]. Techniques for batching

periodic jobs are proposed in [27]. TailTheft uses the tail time for pre-fetching

and delayed transfers, showing the benefits on per application behavior [55]. Go-

ing beyond single app scheduling, in this work we show that significant energy

savings can be derived by scheduling packets across apps.

Catnap system is proposed as a solution for better utilization of high speed access

link in the context of high speed Wi-Fi, and slow broadband Cable/DSL [37].

In principle, Catnap is closest to our approach. Although Catnap concludes

that efficacy of their approach is limited to applications with large packets, we

show in this work that even if the packet sizes are small, significant energy

savings can be made. Our work also takes into account the typical multi-tasking

behavior of smartphone users, and considers methods to ensure user satisfaction

by minimally disrupting foreground job.

2.6 Summary

In this survey, in Section 2.1 we have pointed out that several problems are

limiting the adoption of smartphones. As the problem space is too huge to

tackle in a single thesis, we have attempted to address the two pressing issues

of location sensing and energy wastage in smartphone applications. In Section

2.2, we describe in detail different localization techniques and their shortcomings.
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Later, in Section 2.3, we have provided the essence of our solution which will get

more attention in next chapter. In the following Section 2.4, we have illustrated

the background information of cellular systems which will help to understand the

problem and solution more clearly. Finally, in Section 2.5, we describe different

proposed strategies to reduce cellular energy consumption and later pointed out

the main intuition of our solution.





Chapter 3

Localization using Virtual

Landmarks

3.1 Introduction

Smartphones are becoming truly ubiquitous devices [33] on which people con-

nect, collaborate, and perform various operations. So, smartphone app centric

approach to provide personalized experience to users has gained immense popu-

larity. People now-a-days rarely travel around a new city without using Google

Maps or enter into a shopping mall without checking in FourSquare or Facebook.

An important requirement for a large class of app to function smoothly is to

understand the location of the mobile phone accurately. Hence, there is a need

for developing accurate micro-level localization schemes.

One elegant way to perform micro level localization is to introduce virtual land-

marks [79, 71], which a sensory signature cluster of a particular location that can

be identified by smartphone sensors. The concept behind virtual landmark is the

following. Due to the availability of the embedded sensors (accelerometer, grav-

ity, gyroscope, magnetometer), the smartphones have the ability to recognize the

ambience and behavior of users. Consequently, the smartphones can listen to the

distinguishable environmental signatures to identify a given location. The places

might be a corner of a corridor, a GSM blind spot or a specific Wi-Fi zone.

21
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In this chapter, we propose a thorough virtual landmark enumeration procedure

via clustering sensor data and evaluate our algorithm in both indoor and out-

door space. It is important to note that, in order to effectively use them as

virtual information area, these landmarks need to be stable - that is, the the

mobile phone based landmark signatures need to be trustworthy (a) across dif-

ferent smartphones, manufactured by different vendors (b) across different users.

We carried a detail test of stability of landmarks across different factors and

discovered interesting insights like device hardware specific heterogeneity mostly

affects the stability.

Figure 3.1 shows a concept image of a shopping area annotated with virtual

landmarks. The figure shows different landmarks at different places of the shop-

ping area, e.g. a magnetometer landmark nearby mobile section or a sound

landmark near customer care. A few of the landmarks may be overlapped like

Wi-Fi landmark (denoting a specific Wi-Fi zone) and Gyroscope - Accelerometer

landmark near one book section.

An important use case of virtual landmark can be to track shoppers’ activity.

As there is very less retail analytics application in the market, we can use these

virtual landmarks to track shoppers’ activity. So, as an use case of virtual land-

marks, we can have a retail analytics app. Following this vision, we have devel-

oped a prototype RetailGuide app. RetailGuide app identifies and then utilizes

these virtual landmarks as dropboxes distributed in physical space, where users

can drop their comments about something nearby. To further show usability of

virtual landmarks, we have built a prototype SignFinder app to identify real

world signs like toilet or office dynamically, using the virtual landmarks. More-

over, we have described different use cases of virtual landmarks in preventing

location cheating in location based social networks like FourSquare.

The rest of the chapter is organized as follows. Section 3.2, we focus on the

architecture of our landmark enumeration system, Landmarker. Next, in Section

3.4 focuses on the overview of the workings of a RetailGuide app based on vir-

tual landmarks. In the subsequent sections, we discuss the different smartphone

based landmarks, metrics, experimental setup, results, SignFinder app, cheating

prevention mechanism and future works.
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Figure 3.1: Concept image of a landmark augmented shopping mall needed for Retail-

Guide Application. The shapes of the landmarks are shown as circular, but in reality

it can take any geometrical shape under some area bound.

3.2 Landmarker:Architecture and Methodology

In order to identify the above mentioned virtual landmarks, we built a landmark

identification service called Landmarker. As discussed earlier, Landmarker is

the main component of RetailGuide app. We outline the broad structure of the

organization and working of the landmark identification service, i.e., Landmarker

and consequently dive deep into the design specifics of each of its components.

3.2.1 Description of Design Specifics of Landmarker

As a part of landmark identification service, the sensor data of mobile phones are

collected and send to the cloud server for landmark pruning. On the cloud, we

cluster the processed sensor data to get the sensory landmarks. The landmarks

which recur in multiple traces are more probable to be correct and are considered

stable. These stable landmarks are then stored in a cloud database.

Architecture Outline Figure 3.2 shows the overall architecture of Land-

marker. As shown in step 1 of figure 3.2, the first step includes the collection of

sensor data from different devices and extraction of specific features after proper

sampling and noise removal. Then, k-means clustering algorithm is used to clus-

ter the sensor data in higher dimensional feature space. Next, we use the dead
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Figure 3.2: Architecture of Landmarker : the landmark pruning system

reckoned location estimate of the sensor data and map the clusters in geographi-

cal location space, as mentioned in steps 3 and 4 of figure 3.2. Clusters in both,

location and sensor space correspond to landmarks. Lastly, we comb through

different traces and obtain the stable landmarks to store them in a database

(steps 6, 7 and 8 of figure 3.2). After the initial bootstrapping process, we can

use these landmarks to provide the interesting service of minimizing the error of

location estimates, which in turn helps to find more stable landmarks later. This

feedback loop is completed through the step 9 of figure 3.2. Various processes

involved in the architecture are explained in detail in the following subsections.

3.2.2 Sensor Data Collection

We need to collect the raw sensor data from various sensors in the mobile phone.

Every collected sensor data tuple is denoted by < Time stamp, Sensor Value,

Device ID, Person ID >. The sensor data collection process can be further

divided into the following:

(a) Data Sampling: The entire experiment is performed on android platform

hence we use android APIs to collect data from various sensors. We collected data

with the fastest permissible data delay in android, i.e. SENSOR DELAY FASTEST ,

for each sensor via the sensor manager module. However, the sampling rates of
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the hardware sensors (e.g. Accelerometer) differ across devices. Generally, sam-

pling rate of Accelerometer ranges between 90 Hz - 100 Hz, whereas for Magne-

tometer it is around 40 Hz - 50 Hz. The collected sensor data is post-processed

and the final data is prepared assuming that it is sampled at a constant fre-

quency of 50 Hz for uniformity in data analysis. This means the same reading

of Accelerometer appears twice in processed data. Noise removal is done by

passing it through a low-pass butter-worth filter. The data are then normalized

within a range of [-1,1] thus ensuring an uniform scale for clustering in feature

combination scenario.

(b) Dead Reckoning: Each of the raw sensor data tuple is automatically

not annotated with any location space co-ordinate. But, for the formation of

landmarks from clusters, it is necessary to have these co-ordinates. So, we use

dead reckoning, which helps to figure out an approximate path trace taken by

the user using the accelerometer, gyroscope and compass readings. We could

have integrated acceleration twice and obtained the distance if it were a robot or

car. But this approach is erroneous when applied to smart phones, as shown in

[79]. We instead employ a pedometer algorithm which counts the steps taken by

the user. We find the peaks in the accelerometer-z data points and estimate the

stride length based on the number of steps taken per unit time [41]. The method

of dynamic time wrapping as discussed in [54] is used for removing noise and

false peaks. By reading the compass readings provided by the phone, we obtain

the direction of motion. As described in detail in [79], this can be affected by the

magnetic fluctuations indoors and therefore we have further removed this noise

by opportunistically comparing with the angle calculated from the gyroscope

readings and removing the extra bias. Thus we annotate each sensor data tuple

with a relative (x,y) co-ordinate.

3.2.3 Sensor Feature Extraction

For each sensor, we capture different values through android APIs correspond-

ing to users’ movements or surroundings. For example, in case of accelerometer,

we obtain the acceleration values at X, Y, and Z axis. Then, a function suit-

ably combines all or part of these values in raw or derived form to capture the

distinctive aspect of this captured sensor dataset. For example, the captured ac-
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celerometer readings are represented as modulus value (
√
acc2x + acc2y + acc2z)[79]

and SMA 1 (|linearAccx|+ |linearAccy|+ |linearAccz|) 2, as shown in the table

3.1 [19, 57, 86]. Next, we select a suitable fixed length window and calculate

mean and standard deviation of the values under that window which comprises

the feature set of the particular sensor. Thus, to get proper information from the

collected sensor data, we have extracted several features specific to a particular

sensor, as described in the table 3.1. These are chosen after reviewing previous

works in the area of activity recognition. Feature extraction from the sensor data

tuples is done to be used for clustering in order to obtain the landmarks.

Table 3.1: Features selected for Landmark Identification

Sensor Feature

Accelerometer
√
acc2x + acc2y + acc2z, |linearAccx| +

|linearAccy|+ |linearAccz| (SMA)

Magnetometer
√
mag2x +mag2y +mag2z ,

d
dt

(magy)

Gyroscope gyroz, RotationMatrixz

Sound Sound intensity (in dB)

Light Intensity

Wi-Fi RSSI

GSM Signal Strength

1It is an efficient depiction of the energy of motion. SMA is defined as the acceleration

magnitude without gravitation value summed over three axes within each window normalized

by the window length [86].
2Linear acceleration (linearAcc) is the raw accelerometer readings without gravitation.
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3.2.4 Feature Based Clustering

To find any unique characteristics of the landmarks, we mine the features ex-

tracted from sensor data. We employ feature based clustering method (k-means

clustering) on this processed sensor data. In this clustering, different dimensions

are the features of different sensors. Here, the similarity between two points in

feature space is measured using euclidean distance. However, in case of Wi-Fi,

we introduce a special measure which is elaborated below :

AP Similarity Signature : The value of the access point similarity signature

of Wi-Fi at two locations l1 and l2 is calculated as given in [79] by the formula

S =
1

|A|
∑
∀aεA

min(f1(a), f2(a))

max(f1(a), f2(a))
(3.1)

where f1, f2 are the RSSIs of the APs at two locations l1 and l2 respectively and

A = A1 ∪ A2 denotes the total number of access points at two locations l1 and

l2. Thus, there is low distance between locations which have similar set of APs

with approximately the same RSSI in the Wi-Fi feature space.

We have used the following subprocesses while implementing k-means :

Selection of k : The optimal k is chosen by clustering random samples of the

data for different k and choosing the one for which the intra-cluster centroid

distance is minimized as mentioned in [64].

Selection of initial seed : As given in [25], the initial seeds are chosen by

clustering over random samples of data and choosing the centroids of the cluster

which performs best according to the distance metric given in.

But, it has to be noted that not all clusters identified from k-means qualify as

candidates for landmarks. Dense clusters which can be easily distinguished from

its neighborhood clusters are chosen. This is quantified by the low average intra-

cluster centroid distance and by the high average inter-cluster centroid distance.

Thus these two characteristics essentially ensure the separation of a landmark

in feature space. Once, the clusters satisfy these threshold conditions (properly

normalized, by taking note of the dimensionality), they are then passed on for
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location space mapping. We have tried out other clustering algorithms which

yield similar results (EM algorithm, hierarchical clustering, DBScan), but they

did not suit the purpose or did not provide desirable results.

3.2.5 Clusters to Landmarks

We check if the clusters thus obtained, transform into spatial landmarks. For

this a mapping of each of the cluster-points in the feature space is done to the

location i.e (x, y) coordinates, as show in figure 3.3. These location points are

now fed to the augmented k-means algorithm for clustering. The clusters thus
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Figure 3.3: Landmark Formation : Feature space to Location space Mapping

formed are an ideal candidate for a landmark, as they contain points which are

near in both feature and location space. In figure 3.3, some of the clusters in

feature space are scattered in location space and hence they are not considered as

landmarks. We restrict the area of these landmarks by applying an appropriate

area threshold in location space.

3.2.6 Combining Landmarks

Stability of the landmarks identified on a mobility trace has to be determined.

For this it is necessary to combine similar landmarks from different traces into a

single stable landmark. The traces are logged by changing devices, person, and

time. A landmark would be considered stable if the landmark (if it) appears at
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roughly same location across various traces. The combination of similar land-

marks from different traces are illustrated in figure 3.4. The combination is done

by taking the average of the corresponding points in the two landmarks. The

basic assumption is that errors produced in different samples are independent.

Once the combination is done, we further prune the points which do not fit in

the landmark area threshold. It may so happen that a landmark may not occur

in all traces. We call a landmark stable if it appears at least in 50% of traces.

The landmarks which are identified to be stable across different heterogeneous

traces are stored in a database.

Location Space Location Space

Landmarks got from different traces 

from same sensor feature set

All landmarks are 

spread across less 

than area threshold A
This combined 

landmark is also 

spread across less 

than area threshold A

All data points of this landmark 

are centroids of different samples

Figure 3.4: Combining landmarks from different traces to find stable landmarks

3.2.7 Calibration of location of sensor data

Simple dead reckoning based location estimation will lead to error, as we have

discussed in the above section. To overcome this problem, after the initial identifi-

cation of a set of landmarks with estimated location, we continuously re-calibrate

their positions with respect to newly arriving data points by using the concept

of Simultaneous Localization and Mapping (SLAM) [38]. When a new trace

generates a landmark, it is tagged as one of the existing landmarks (say) x, if

it is close to x in both feature and cartesian space. Simultaneously we correct

the given location by shifting the subsequent location points by the difference in

the two (previous and current) estimates of the landmark location. Interestingly,

this calibration step also helps in the convergence of the locations of a stable set

of landmarks.
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3.3 Implementation Details of RetailGuide

This section describes the implementation details of the developed application

RetailGuide. Figure 3.5 actually depicts the modules of the RetailGuide ap-

plication which comprises of the landmark pruning module named Landmarker

(discussed in Section 3.2), comment and offer managing service, front-end cus-

tomer side android app and mall owner side interface. Each of these is explained

in detail along with the challenges faced while building them.

Customer Side 
RetailGuide App

Sensor Data 
Collector

Comment and 
Offer Database

Landmark 
Database

Landmark 
Creator

Comment and 
Offer Service

LANDMARKER

RetailGuide Server

Mall Owner 
Side Interface

Figure 3.5: Implementation blocks of RetailGuide App with landmark pruning system

Landmarker

Landmarker : The Landmarker service runs the clustering and landmark

identification service. Its input is the set of sensor data sent by the phone

recorded during a user trace, via the Sensor Data Collector module residing

on customer’s smartphone, as shown in figure 3.5. Then this sensor data is sent

to the server side, where the clusters generated using k-means clustering and

the activity trace are stored in the database using Landmark Creator module, as

shown in figure 3.5. Subsequently, with time database of stable landmarks are

created and saved in the database. The process is described in detail in section

3.2.

Comment and Offer Service : This module manages the comments sent by

the customers and offers pushed by the mall owner. It appropriately tags com-

ments or offers to the nearest virtual landmark pruned by Landmarker module,

as depicted in figure 3.5. Moreover, the database for storing offers and comments

is the repository for fast access. It is maintained in MySQL with relational tables

maintained each for user, traces, landmarks and comments. This database acts
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as a way of communication between the App, Landmarker and the feedback sent

to the users and mall owners. A PHP push service is running as a cron job which

frequently polls the database for changes. If a users location has been updated,

then corresponding location specific notifications are sent to the user. This is

accomplished by the use of Googles free Cloud Messaging Service.

Figure 3.6: Screenshots of RetailGuide Android Application.

Customer Side RetailGuide App : The Android App built for the front-

end of RetailGuide is a light weight android application shown in figure 3.6. It

is used to collect the sensor data in the background via a specific module shown

in figure 3.5. It also collects user activity of the app, like comments inserted

by the user, notifications received and changing the parameters of logging sensor

data. It records the energy levels of the phone for evaluation purposes. Thus

a user, on the front end is seeing just a text-box and a couple of buttons to

start/stop logging as shown in figure 3.6. This easy to use interface makes

the interaction time faster. Once, the user enters a mall, he starts logging. He

can move around the mall at various speeds and comment about things he sees,

likes or dislikes. Suitable location updates are sent to the server. If there are

any relevant notifications that can be sent to the user, they are pushed to the

phone. This relevancy is determined on the server, by the location coverage of

the reviews or offers (by the mall owner) in the database.

Mall owner side Interface : The mall owner perspective, shown in figure 3.7,

includes tools for visualization of the various kinds of retail analytics, like land-

marks, location heat maps, accuracy and sentiments of the comments entered,

the number of offers pushed to the user. This module interacts with server side

of RetailGuide to get relevant information as described in figure 3.5. This inter-

face, which is implemented using PHP, makes it easier for the owner to visualize
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on Google Maps. She can integrate it with the main distribution system and can

pinpointing the location he wants an offer to be relevant. He also has the option

to set the coverage of an offer, which determines how often it is pushed to the

customer’s app.

Figure 3.7: Mall owner side Interface for RetailGuide App

3.4 Smart phone based Landmarks

In this section, we will restate the idea and semantics of a smart phone based

landmarks. It will help in understanding how these landmarks may help an

application running in phone to understand the actual context of user.

3.4.1 Classification of Smart phone based Landmarks

We can classify different landmarks pruned from smart phone sensor data in the

following way:

1. Sensors’ feature based Landmarks

(a) Single Sensor Landmarks Landmarks which are created from the clus-

ters of single sensor information, e.g. , GSM blind spots (from GSM

chip), a low-lit area (from light sensor), an area with unique magnetic

fluctuation (from magnetometer) etc.

(b) Multi Sensor Landmarks Landmarks which are generated from the

multi-sensor clusters in higher sensory dimensions, e.g., an accelerometer-
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gyroscope-light induced landmark etc. Generally people slow down in

a low-lit corridor while walking. It can result in this type of landmark.

2. Spatial Landmarks

(a) Universal Landmarks Some sensory signatures which correspond to

a particular landmark is universal in nature, i.e., independent of the

location, time etc. For example, unique signature created by phone’s

accelerometer in stairs or in speed-breaker are unique across universe.

(b) Local Landmarks However, some sensory landmarks are pretty much

unique to the locality or the time domain they belong. They are

learned dynamically from the environment and later stabilized over

time. For example, a specific set of Wi-Fi access point MAC signatures

or a specific sound intensity of a place can uniquely identify a place

in a local domain.

3. Perceptual Landmarks :

(a) Highly Perceptual Landmarks Corridor corners or indoor entrances

which can also easily be perceived by human senses, can be categorized

as highly perceptual landmarks.

(b) Least Perceptual Landmarks Some Wi-Fi or magnetometer signature

based landmarks can be classified in this category of landmarks.

3.5 Experimental Setup

We conduct our experiments by collecting the motion traces of participants with

smart phones in user’s hands. The phones used are Samsung Galaxy S2 I9100G

and Samsung Galaxy S3 I9300. These phones provide us with sensors such as ac-

celerometer, gravity, gyroscope, magnetometer, orientation, sound, light, Wi-Fi

and GSM. Both of the phones are upgraded to android 4.1.2 (Jelly Bean). In our

experiments, we collect these sensors’ data while walking with the phone held in

the hand, facing upwards. We use RetailGuide app [9] with Landmarker service

running in the background to conduct our experiments. The data recorded inter-

nally is sent to the RetailGuide server. The server side code is written using php
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and MATLAB, and implements the dead reckoning, clustering, and landmark

signature-matching algorithms. We assume constant orientation of the phone

for easy understanding of the setup[54].

We have conducted our experiments in three places to explore the robustness

and usability of the system in different scenarios. Initial sets of experiments are

done inside the Computer Science and Engineering Department, IIT Kharagpur

and an outdoor market (named Technology Market) for fully understanding the

dynamics of stable landmarks. Subsequently, we mainly concentrated on the

usability of RetailGuide app through our experiments. Following are the de-

scription of experiments performed in three different places:

Department Experiment: We have conducted different sets of experiments

in the corridors of the Computer Science Department (500 m2 area in indoor

environment) (See figure 3.12). These sets of experiments are done for testing

the feasibility of Landmarker service. To understand the dynamics of stability

of these sensor landmarks and usability of Landmarker service, we performed

experiments where the user traces the same path multiple times. We have also

done our experiments with RetailGuide app in this indoor corridor by mimicking

a shopping mall scenario. In both the cases, data were collected multiple times

on two devices, at two different times of the day - morning and night by four

volunteers. This area of experiment had Wi-Fi connectivity.

Market Experiment: For stability analysis of landmarks in outdoor scenario,

we have conducted different set of experiments in around 600 m2 area in an open

market area having a few permanent shops (Technology Market). Here also, data

were collected multiple times on two devices, at two different times of the day -

morning and night by four volunteers. We mainly concentrated on the creation

of the landmarks and their stability in outdoor settings. This outdoor area of

experiment also had the Wi-Fi connectivity.

BigBazaar Experiment: To test the practical usability of our RetailGuide

app, we have conducted an experiment in a nearby Big Bazaar (one of the largest

shopping mall chains in India) outlet. We have done our experiments in a floor

having different sections using RetailGuide app. Four volunteers helped us to test
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the app extensively. We have also asked the volunteers to express their feelings

about the different sections of the mall through comments in RetailGuide app.

Some of the snapshots during the experiments are shown in the figure 3.8.

This indoor shopping area did not have the Wi-Fi connectivity and we used 3G

connectivity for the experiments.

We have also simultaneously collected GPS readings to compare with our results.

We have used GPS Logger for Android app for logging GPS readings in both

Department Experiment and BigBazaar Experiment for RetailGuide app. We

have also recorded the battery levels of running RetailGuide app in different

experiments for calculating the energy footprints.

Figure 3.8: Snapshots of RetailGuide experiments in BigBazaar

For ground truth recording of actual location, we have numbered the different

points in the experimental areas and asked the volunteers to input the numbers

when they cross them. And we also created a php based server side interface,

shown in figure 3.7 to push offers to specific users and monitor the experiments.

The tuned values of landmark area threshold, feature space nearness value and

confidence count are taken as 6 m2, 0.7, and N/2 (where N is the number of

traces) respectively. Reasons behind these parameter selection is elaborated in

the following section.

3.6 Parameters of the system

In order to discuss the results and core issues of the problem, we would like to

introduce a few parameters which are crucial to detect and characterize virtual

landmarks.
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(a). Area threshold for landmark - This is defined as the area covered by

a particular landmark. Since the effect of a sensor eases out slowly a threshold

need to be defined to mark the area of a stable landmark. While conducting

experiment, we have found that, except few, in most of the cases, the effect of a

sensor is most pronounced within a 6 m2 area. Hence most of the sensor-spatial

clusters built from light sensor or gyroscope sensor, will generally cover around 6

m2 as shown in figure 3.9. However, a few exceptions like Wi-Fi landmark cluster

might cover an area of close to 30 m2 as shown in figure 3.9. Since majority

of single sensor clusters are around 6 m2, multi-sensor landmark clusters are

also mostly around 6 m2. For this reason, in order to maintain uniformity, we

have assumed that a stable landmark covers an area of 6 m2. Moreover, if we

have taken wider area for landmarks like 10 m2 then we might have lost the

required localization accuracy. Wider area landmarks would not have helped in

pinpointing location more accurately. As this choice of area has provided us with

satisfactory number of landmarks, we have continued with this value.

The cdf graph in figure 3.9 shows that various single sensor features are clustered

around different areas in the location space, from the Department Experiment.

The reason of this variation is due to different level of sensitivity to environment

of different sensors.
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Figure 3.9: CDF of landmark cluster area for different sensors

(b). Number of Features to be Combined - In order to discover landmarks,

sensor data from nine sensors are collected. For each sensor, several statistical

measures like mean and standard deviation are collected. Therefore each loca-

tion is characterized by f (= no. of sensors × statistical measures) number of

features. A group of points may get clustered based on a subset of features –

therefore in order to find the best clustering condition one has to exhaustively

look into all the subsets which would be 2f - 1.
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This would explode the feature space and hence optimal clustering may not be

feasible. But, interestingly we have found that we do not have to consider all

the subsets. If we consider only two or three features in the combination, it

suffices our purpose. Both the count of clusters as well as landmarks (co-located

clusters) decrease with the increase in combination counts, as shown in figures

3.10 and figure 3.11.
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Figure 3.10: Average number of clusters in our experiments. The increase in the

number of clusters for parameter nearness 0.1, is due to too much relaxation of the

constraint. We are taking too many insignificant clusters into account.

For experimental purpose we have taken only the mean of all the sensor data

and combined different sensor’s data to discover clusters. In figure 3.10 it is seen

that the number of clusters formed decrease with the increase in the number of

features combined for clustering. Moreover, we also see similar trend in the case

of stable landmarks (clusters which clusters both in feature and location space),

as shown in figure 3.11. Most importantly, we see a dramatic decrease in the

number of landmarks when we combine two or three features. This means that

there is no need to explore the combinations which comprise of more number of

features.
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Figure 3.11: Average number of landmarks in our experiments

(c). Feature Space Nearness - It is the measure to determine whether two
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points belong to the same cluster. That is, given a cluster which has been built

considering some sensor features, all pairs of points in that cluster need to be

less than the specified threshold – which is termed as Feature Space Nearness.

The higher the value of feature space nearness, the closer the data points are

in feature space. For this parameter, we have chosen a value of 0.7, as this is a

moderate trade-off value between the quality and quantity of clusters, as shown

in figure 3.11.

(d). Confidence count - It is the number of path traces in which a landmark

is found, for example, if N traces are considered, confidence count N/2 means

that the landmark has been detected in at least N/2 traces. The higher the value

of the confidence count corresponding to a landmark, the higher its probability

of being stable. We have chosen the confidence count parameter value as N/2

due to the availability of stable landmark clusters, shown in the figure 3.17.

3.7 Experimental Results

In this section, we first evaluate the potential of discovering stable landmarks

using mobile phones and then check the efficiency of RetailGuide to provide

smarter analytics and accurate recommendations. In order to accomplish an

overall evaluation, we perform the following investigations.

1. The subset of sensors responsible for most stable landmarks.

2. The effect of heterogeneity on formation and stabilization of landmark

• change in user collecting the data

• change in the time of the day

• change of the devices

3. What is the effect of heterogeneity on landmark based localization system?

4. The impact of indoor and outdoor scenarios on landmark creation or sta-

bility.
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5. How accurately does RetailGuide reflect users’ trails and sentiments in an

indoor space?

• Accuracy of Comments and Pushed Offers in RetailGuide

• Effect of Stability of Landmarks on the functionality of RetailGuide

system

• Energy Cost of RetailGuide system

Figure 3.12: Landmark annotated Indoor area map. This is the map of Second

Floor, Computer Science and Engineering Building, Indian Institute of Technology,

Kharagpur.

3.7.1 Sensor wise Analysis

There are different possible sensor features and their combinations. The ques-

tion is that which feature set of sensors gives more stable landmarks consistently.

For this, we have pruned different landmarks found from different sensor feature

sets. We have done the experiments both indoor (Department Experiment) and

outdoor (Market Experiment). The landmarks found in the Department Experi-

ment, which is done in the indoor department corridor, is shown in figure 3.12.

We have found a total number of 13 stable landmarks which are formed using

single or multiple sensor features. Main contributory sensors for these stable

landmarks are depicted in the figure 3.13. In the outdoor Market Experiment,

we have found 7 stable landmarks and the main contributory sensors for the sta-
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ble landmarks are shown in the figure 3.143. We can see that inertial sensors like

gyroscope, magnetometer, or software sensor like orientation (rotation matrix)

primarily produce stable landmark. Moreover, some of the features like sound

intensity does not give any stable landmark in indoors, even if we couple them

with the stable landmark generating features. In Market Experiment there is a

presence of numerous light based stable landmarks and some sound based stable

landmarks due to distinctive lighting and sound situation in the open market

area. These results can help us identify the set of sensors which can be turned

off in case of low battery power situation and prune the dataset required to be

send to the server.
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Figure 3.13: Sensor-wise Stable Landmarks for the Department Experiment
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Figure 3.14: Sensor-wise Stable Landmarks for the Market Experiment

3Total sum of individual sensory landmarks is greater than the number of actual stable

landmarks is because multiple sensors sometimes constitute one landmark.
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3.7.2 Analyzing different types of Landmarks pruned

In this subsection, we will dissect the semantics of different types of landmarks

and their respective contribution to the overall landmark population. Figure 3.15

shows the characteristics of landmark population in the department corridor area

and figure 3.16 shows the different types of landmarks in the open market area.
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Figure 3.15: Different types of Landmarks in Department Experiment
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Figure 3.16: Different types of Landmarks in Market Experiment

From figures 3.15 and 3.16, we found that we can obtain a substantial amount

of single sensor landmarks, due to varied environment of the experimental areas.

If we have time constraints, single sensor based systems also can work really

well in indoors. It is interesting to note that, we get a good amount of highly

perceptual landmarks4 like corners or dark regions or sound zones, with respect

4Corridor corners or indoor entrances which can also easily be perceived by human senses,

can be categorized as highly perceptual landmarks.
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to least perceptual landmarks 5, in both of the experiments. Moreover, we get

similar number of coverage based landmarks6 in both the experiments.

3.7.3 Effect of Heterogeneity in Landmarker System

We investigate the effect of heterogeneity on the stability of landmarks pruned

using Landmarker in this section. By stability of landmark in face of heterogene-

ity, we mean that the landmarks are invariant in spite of changing the devices,

the time frames or persons carrying the devices in different experiments. The

following results are from the Department Experiment using Landmarker.

(a) Person Heterogeneity: We felt that the variation of the walking style,

movement speed of different persons can have an impact on the stability of land-

marks. Therefore, we have conducted a small-scale experiment to collect traces

with four persons. Figure 3.17 shows that the number of landmarks obtained

by different users decreases as the confidence count of the landmarks increases.

However, most of the users obtain roughly same number of landmarks. The num-

ber of landmarks obtained at confidence count N/2 is reasonable and on manual

inspection are found to be of ‘optimal’ size (not too large or almost invisible);

Here N is the total number of traces collected from the users i.e. each user

contributes N/4 traces. Hence, N/2 is considered as default confidence count.

The graph shown in inset of figure 3.17 shows that we are getting around 12

stable landmarks, which is considerably high for such a small indoor space. Each

individual users besides discovering these stable landmarks also identify several

‘unstable’ landmarks.

(b) Time Heterogeneity : In this case, we have studied the effect of time of

a day on the stability of landmarks. We have taken two time periods, i.e. day

period (10 a.m. - 1 a.m.) and night period (8 p.m. - 11 p.m.), for collecting the

traces using mobile devices. The intuition behind this experiment is that the

5Some Wi-Fi or magnetometer signature based landmarks are classified in this category of

landmarks.
6High coverage landmarks have an area around 6 m2 and low coverage landmarks have an

area around 2 m2.
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signatures like light, sound etc. change with the time of the day, e.g., a busy

shop becomes silent at night.

Although the count of the landmarks does not vary much; unlike previous case,

the comparison for actual landmarks in figure 3.18(a) reveals that approximately

33% of the landmarks are stable. It is lower than the case of different users.
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Figure 3.17: Number of landmarks for different users. Here, N is the total number of

traces. That means each of the user has moved N/4 number of times in the designated

area. Inset figure shows the comparison of number of stable landmarks and user specific

unstable landmarks

(c) Device Heterogeneity : We have repeated the experiments of collecting

traces with two devices, namely Galaxy S3 and Galaxy S2, to test the effect of

change of device on the stability of a landmark. Figure 3.18(b) shows that we get

around 3 stable landmarks in this indoor space, which is considerably less than

the earlier two cases. So, we can conclude that the effect of device heterogeneity

has the most impact on the stability of landmarks.

It is interesting to note that even though both the devices are from the same

manufacturer and same series, there have been a considerable difference of the

hardware, subsequently, the landmarks. So, the inherent difference of sensitiv-

ity and precision of different sensors has a telling impact on the stability of

landmarks. On the other hand, the effects of change of time and persons, are

significantly lower than the case of devices. Therefore, if we want to create a

corpus of stable landmarks to augment the location based services, we have to

organize it with respect to different class of devices or a set of sensors, as hinted

by [35].

Energy and Accuracy: Landmarker vs GPS It may seem that the advan-
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Figure 3.18: (a). Comparison of number of stable landmarks and time specific un-

stable landmarks (b). Comparison of number of stable landmarks and device specific

unstable landmarks

tages of landmarks might be just that of its capacity to become virtual dropboxes.

In order to justify the localization using landmarks instead of using GPS, we did

a comparative study of GPS and Landmarker both in aspects of energy con-

sumed as well as localization accuracy. This comparison results are from Market

Experiment. Figure 3.19 shows that the energy consumed by Landmarker with-

out Wi-Fi is almost comparable with GPS even with majority of the sensors

constantly polling at a frequency of 1Hz. But, figure 3.20 clearly notes that this

is justified because of the accuracy of the Landmarker based system compared to

that of the GPS. Interestingly, although most of the time our system works well

in terms of localization accuracy, but sometimes GPS based system gives lower

error. It is due to unavailability of satisfactory number of stable landmarks in

some areas. This makes it clear that in order to implement a virtual dropbox

system, virtual landmarks are necessary because of its localization as well as

abstraction powers.

3.7.4 Comparison of Indoor and Outdoor Scenario

In this section, we will discuss in detail about the results regarding the landmark

creation and localization error found from our Department Experiment and Mar-

ket Experiment. These results will shed light upon the workings of Landmarker

system in indoor vis-a-vis outdoor scenarios.

Analyzing stability of landmarks in Indoor and Outdoor: In general,
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Figure 3.19: Comparison of Energy Consumption in Landmarker service and GPS

based localization.
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Figure 3.20: Comparison of Localization Error in Landmarker service and GPS based

localization.

indoor space contains more landmarks than the outdoor space, which we can get

to know from figure 3.21. The reason is the availability of more signatures in

the indoor space. But, if we increase the confidence count values, the difference

of the number of landmarks decrease.

Moreover, the stability of the landmarks are also observed more in the indoor

space as the change of the surrounding environment is more drastic in outdoor

space. On an average, the difference of number of landmarks is around 6, even in

this small area experiments. Moreover, we are able to find a considerable amount

of landmarks in outdoor space also, which can easily augment GPS in outdoors.

Comparing Localization Error in Different Settings: We have created

a stable landmark database using a specific triplet of < Device, Person, Time
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Figure 3.21: Number of Stable Landmarks in Indoor and Outdoor Experiment Spaces
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(c) Localization Error

if we measure by only

changing time
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Figure 3.22: Localization Error (in m) in different settings in both indoor and

outdoor spaces. We build our landmark based localization system at a specific

(Device, Time, Person) setting and we change one parameter to see the effect.

>. In order to understand the impact of an individual, the time and device, we

change any one of these three parameters and test the deviation from ground

truth (identified landmark), i.e. localization error. In figure 3.22, we can see

that if we change device, person or time, the localization error will increase.

However, the effect of device change on error is the most significant, which is in

line with our previous findings. This trend also remains similar in also outdoor

experiment, as shown in figure 3.22. In general, we can see localization error

in outdoor hovers around ∼ 10m and in indoor the localization error is around

∼ 5m.
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3.7.5 Analytics from RetailGuide

The task of RetailGuide is to properly identify retail space by running the back-

ground Landmarker service. We initially performed a pseudo experiment in

Departmental corridors to test its performance. In this Department Experiment,

users roam around with smart phones running RetailGuide app in the depart-

ment corridor, which mimics a shopping mall situation in a controlled manner.

Corridor corners are named as different sections of a shopping mall like food,

clothing, utensils, and cosmetics. Users also comment while moving and get

relevant offers cum recommendations. In this experiment, we have considered

around 12 landmarks, which we use as dropboxes of comments.

Figure 3.23: Users’ movement heat map found from RetailGuide Application.

A user’s trail is inferred from his movement from the latest landmark. Figure

3.23 shows the heat map of users’ movements in the corridor inferred from near-

est landmark locations. Clearly, it contains some error as most of the users’

movements are rectangular. From the estimation of the position of an user so

derived, any comment she posts is tagged with that location by the cloud ser-

vice. The service also accordingly attach this comment to the nearest landmark.

The efficiency of the Landmarker algorithm would be measured in terms of the

number of times it is attached to the correct landmark. Figure 3.24 illustrates

example of comments posted by users at different locations. The circle shaped

dots in the figure 3.24 denote correct location tagged comments and star shaped

dots denote erroneous location tagged comments. In general, we get around 75%

accuracy in attaching a comment to the correct landmark. After this success of

pseudo-experiment, we did an experiment in a nearby shopping mall with a set

of users to observe the efficacy of RetailGuide app in a real world scenario, which
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Figure 3.24: Comments of different users through RetailGuide Application.

we name as BigBazaar Experiment. Users who participated in the experiment

are told to express their views through comments about the mall while roaming

around with RetailGuide application running smartphones.

Figure 3.25: Landmark annotated Big Bazaar (Shopping Mall) area map. This is the

Google Map snapshot of the Big Bazaar shopping mall building in Kharagpur, India.

Sentiments of Comments in BigBazaar Experiment : In order to test

the accuracy of The RetailGuide in a real mall scenario, we used the parameters

already tested in the simulated Department scenario. We chose Big Bazaar,

Kharagpur, India, as our experimental location. Each of the four volunteers

were instructed to roam around the mall in a random manner in the aisles. They

also commented naturally expressing their views about the things they saw as

they went around. We also had inserted a bunch of offers in the database, which

can be pushed to the user along with the relevant feedback comments based on

their location. As the users started their movement, the landmarks database

started getting populated and we obtained around 15 stable landmarks. We also

observe that the number of comments generated varies from user to user, both

in number as well as sentiment, as shown in figure 3.26) This validates that the

perception of each user varies and is valuable to the mall owner.
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Figure 3.26: Sentiment of Comments of different users through RetailGuide Applica-

tion.

Accuracy of Annotation of Comments in BigBazaar Experiment : In

our system, each comment is annotated to the nearest landmark which acts as a

virtual dropbox. Comments are given by the users via client side of RetailGuide

app and these are sent to the RetailGuide server for the annotation. We argued

that there are enough landmarks to make these comments relevant in a mall

scenario. We measure the relevance of comments by the distance between the

actual location where the comment was made and the location of the landmark

to which it is annotated. The measurement of this “error” metric can be seen

in 3.27(a). It can be noted that almost 80% of the time, this error is less than

10 meter which qualifies as being relevant to the comment. Also this error is

decreasing with trials, as can be seen in 3.27(b).
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Figure 3.27: (a). CDF of Accuracy of Tagging of Comments to particular locations of

different users through RetailGuide Application. (b). Change of Accuracy of Tagging

of Comments with Trials.

Accuracy of Pushed Comments and Offers: RetailGuide system works

better because of increasing comments and traces of the users, it becomes imper-

ative to attract the user to give his data. We argue that this benefit comes in the

form of location based reviews and comments of users along with relevant offers

pushed by the mall. RetailGuide server pushes the relevant offers and comments

to the customer side app. This pushing mechanism works based on the location
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updates sent by the phone during the course of the mobility trace. Each review

has a given coverage area depending on its content and relevance. The accuracy

of pushed comments is measured by the distance between the user’s current lo-

cation and the location where the comments was inserted. But, note that these

offers are in virtual dropboxes. Therefore, the system searches for the nearest

such dropbox based on the location and pushes the reviews in those dropboxes.

It can be seen in figure 3.28(a) that this error is within the limits of the same

locality (say aisle) and also this error is decreasing with more trails as shown in

figure 3.28(b).

Moreover, mall owner puts some offers at different locations to attract more cus-

tomers. Whenever these offers are pushed to the phone, the user can distinguish

them as relevant or irrelevant. It can be seen in figure 3.29 that the error of

pushed offers is well within the bounds of human perception as majority of these

offers are qualified as relevant offers.

10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

0.8

1

Error of Comments pushed to the phone in m

C
D

F
 

(a)

2 4 6 8 10 12 14 16
10

15

20

25

30

Trial Number

E
r
r
o

r
 
i
n

 
P

u
s
h

 
N

o
t
i
f
i
c
a

t
i
o

n
s
 
i
n

 
m

(b)

Figure 3.28: (a). CDF of Accuracy of Pushed Comments to particular locations of

different users through RetailGuide Application. (b). Change of Accuracy of Pushed

Comments with Trials.
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users through RetailGuide Application. (b). Change of Accuracy of Pushed Comments

with Trials.
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3.8 Other Possible Applications

In this section, we will discuss some of the initial ideas of applications which

can be built easily using smartphone based virtual landmarks. As proofs of

concepts, we have also shown some initial experimental results to trigger further

explorations.

3.8.1 SignFinder App : Generating Virtual Signboards

Besides RetailGuide, the Landmarker application can be used to build various

other location based application. One such can be SignFinder where the app

would help in creating virtual signs. We discuss an outline and some initial

experiments to prove the feasibility of such app. The motivation behind such

app is stated next.

In emerging economies, signs identifying locations of interest is largely missing.

For example, names of streets are hardly written on the walls of houses/corners

located on the corresponding streets, in most of the smaller (some bigger) railway

stations one would not find pointers identifying the ticket counter. The huge

penetration of smartphones can be leveraged to compensate this dearth of signs.

This can be achieved (a). if the point of interest can be identified as a stable

virtual landmark and (b). if the combinations of sensors which identify the

location is unique. One can then develop an app which would annotate the

places of interest when people carrying the smartphone move by those particular

locations. Repeated annotation by a lot of users can be an excellent crowd-

sourcing method to perfect the signs. In previous sections, we have shown that

we can find a satisfactory number of stable set of sensory landmarks, in both

indoor and outdoor locations. A possibility is that we can use these stable

landmarks to create virtual signboards. Here, as an initial proof of concept, we

checked whether the stable landmarks formed in our experiments correspond to

places of interest and whether semantically similar places (e.g. laboratory) have

(near) identical set of sensor features. using the app developed for this purpose

which we term as SignFinder.
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Table 3.2: Signs with corresponding Sensor Signature Vectors

Signs Sensor Signature

Toilet High Sound, High Light, Low Wi-Fi, High GSM, High

Relative Humidity

ATM Low Sound, High Light, Low Wi-Fi, High Magnetic Sig-

nature, Low Relative Humidity

Lab High Sound, High Light, Low Wi-Fi, Low GSM, High

Magnetic Signature, Low Relative Humidity

Stair High Sound, Low Light, Low Wi-Fi, Low GSM, High

Gyroscope Signature Change

Shop High Sound, Low Light, High Wi-Fi, High GSM, Low

Magnetic Signature

Cycle Stand High Sound, High Light, High Wi-Fi, High GSM, High

Magnetic Signature

Experiments for finding Signs

SignFinder app consists of two modules, namely, previously discussed Land-

marker module and SignCreator module. SignCreator module takes help of

different sensory signature vector to identify generic places like ATM, Toilet,

Laboratory etc. while the identified landmarks help to localize them. Some of

the sensory signature vectors corresponding to different signs are given in table

3.2.

We have done experiments in the corridors of Department (Department Exper-

iment) and in the outdoor market (Market Experiment). Users record sensory

signatures of different signs and subsequently a small database of signs like toilet,

stairs, server room, office, shops, cycle stand, ATM etc. as given in the table 3.2

are created. For example, in indoor scenario, signature vector of toilet sign looks

approximately like (High Sound, High Light, Low Wi-Fi, High GSM, High Rel-



3.8 Other Possible Applications 53

ative Humidity) and in outdoor scenario, shop sign shows a specific light-sound-

gsm signature. Then, we consider stable landmarks created using Landmarker

module and tag the discovered signs to database of local stable landmarks of a

particular area. That is, stable landmarks help in pin-pointing signs.

Results and Research Issues
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Figure 3.30: Overlay on Google Earth of the Indoor Area with built Signs and stable

Landmarks

Figure 3.30 shows the dynamically generated signs in the indoor experimental

area in white boxes. If we look into nature of signatures of different signs, we

find interesting observations. For example, signature vector of lab room looks like

(High Sound, High Light, Low Wi-Fi, Low GSM, High Magnetic Signature, Low

Relative Humidity), which is found almost similar in different user traces. On the

other hand, Figure 3.31 reveals some signs found in our outdoor experimental

area. For the outdoor case, the semantics of different signs are different. For

example, ATM sign shows a strikingly different signature in (wi-fi, magnetic,

sound, relative humidity) dimensions. But, in both cases, we found a different

set of signs which will influence the further explorations.
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Figure 3.31: Overlay on Google Earth of the Outdoor Area with built Signs and stable

Landmarks
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We must comment that this is an initial study which illustrates the possibility

of developing such an innovative and useful application. However, much de-

tailed experiments need to be done to conclusively establish the feasibility of

SingFinder.

3.8.2 Location Cheating Prevention in LBS

Cheating in location based services (LBS) is pervasive and is difficult to detect.

Leader boards and monetary benefits to the toppers have lead to people doing

replay attacks either by running a simulator or modifying the GPS driver of the

phone [45]. Also, the current preventive measures do not provide fine-grained

accuracy checks. For example, a person can ”check-in” to a cafe by not buying

or by even just standing outside the cafe. This inaccuracy has been a hindrance

to the shop owners who are not able to attract enough users with discounts and

offers for the user with the most check-ins.

VENUE

Check-in Request

Verify with <Landmarks, Time>

Send Landmark Info

WELCOME USER or BYE  YOU CHEAT

Figure 3.32: Architecture of Location Cheating Mechanism using Landmarks

As an initial idea, we can use stable virtual landmarks as identification tokens

to check authenticity of a particular check-in, as shown in figure 3.32. Location

verifier will use location specific landmark information to weed out the cheaters.

If some of the stable landmarks from the smartphone sensor data of the users

are identified, we can be sure that the user is actually in that location and not

cheating.

If there is an advisory who has all possible sensor data to replay landmark in-
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formation to fool such a location cheating prevention system, we argue that the

cost of replaying data even for a single place will be huge. This can be quantified

as the data cost in KB which has to be generated in order to cheat as shown in

3.33. This figure shows the difference between a simple GPS replay attack and

landmark based replay attack in terms of data size in BigBazaar Experiment and

Department Experiment. It can be seen that there are orders of difference be-

tween the cheating scheme for Landmark and GPS. In case of GPS, it is enough

to just change the location using a rooted phone by giving the coordinates. How-

ever, in order to cheat in our landmark based system, it is imperative that they

get the sensor data for these traces.
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Figure 3.33: Cost Analysis of Location Cheating (Landmarker Vs GPS)

3.9 Points of Discussion

We have developed a working system which can successfully demonstrate the

proof-of-concept of Landmarker. However, in order to deploy it in a commercial

scale several further tests and fine-tuning needs to be done, we are listing some

of them.

Stability of the clusters of K-means algorithm : The basic underlying

clustering algorithm of our approach is k-means. So, the stability of clusters

formed by k-means algorithm are very important to our approach. Several the-

oretical works have been done on the stability of clusters formed via k-means

algorithm. [23] shows that existence of a unique minimizer cost function implies

stability. If the data has multiple minimizing clusterings, then it is unstable. We
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observed that, in most of the cases of sensors’ ensembles, we do not get multiple

clusterings for the k determined by [64], as k plays an important role on the

stability of the clusters of a dataset [23]. [53] shows that stability of clusters is

fully determined by the behavior of the objective function which the clustering

algorithm is aiming to minimize. If the objective function has a unique global

minimizer, the algorithm is stable; otherwise it is unstable . Therefore, if we have

an optimal minimizing objective function with properly chosen k and initial seed,

we are mostly sure about the stable clusters from k-means algorithm. In this

chapter, we have chosen one such procedure before applying k-means, which has

given satisfactory results. But, it can be subjected to further investigation.

Effect of Phone orientation : Since our study was limited to identify the

impact of changing devices, time and user, we have neglected the impact of the

phone’s orientation as held by the user. This assumption is fine if we assume the

user’s mobility pattern is unaffected by the phone’s orientation. However, for

example, a user might walk faster if his phone is in his pocket rather than held

in his hand. But, we did not proceed further in this direction because a work by

[54] has taken this into account to intelligently subtract the orientation effect on

the dead-reckoning.

Experiment with more devices would help : One may ask we could have

taken more devices to conduct an elaborate set of experiments. But, in this small

scale experiment, we have considered the best case for devices by choosing same

generation devices from same manufacturer. Even then, we have found that the

device is the most prominent parameter affecting the stability of landmarks. A

recent work [35] has shown that there are clusters in the sensors of different

devices such as Nokia, HTC, iphone, LG handsets. As the effect of device is

the most, we can have a set of landmarks belonging to each device class. This

chapter strongly hints at this type higher level organization of database for future

landmark supported co-operative applications.

Ensuring privacy of users : This kind of pervasive application generally

suffer from privacy issues. In large scale deployment, this issue need to be tackled

in detail.



Chapter 4

Cellular Radio Energy Reduction

4.1 Introduction

Mobile data traffic has been growing steadily driven by wider penetration of

smartphones, and use of many network intensive applications [48]. As the adop-

tion of cloud based services grows, the data traffic from smartphones will keep

rising. Most of these apps, like mailing, online storage, or social networking apps,

run as background services. The application thread wakes up intermittently to

synchronize with the server.

As the landscape of smartphone based apps are evolving, several studies have

investigated the traffic on smartphones [40]. One of the observations form the

work is that most smartphone data transfers are small, with median size of 3KB

only. Typically these small transfers are non-overlapping in time, and wake up

the radio resource, like 3G network card, for every communication leading to

high energy usage [68]. Several prior works have reported the power character-

istics of 3G radio [21, 36]. The key observation is that every time a 3G radio

transitions from sleep (IDLE) to wake up state (CELL DCH), the card will

continue to stay up after the transmission for a threshold duration, called tail

time (CELL FACH), thereby wasting energy. Also the transition energy from

each state is high. Under-utilizing the bandwidth in CELL DCH state is also

detrimental towards the goal of energy optimization.

57
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Reducing tail time energy wastage has been addressed primarily by (a) dynamic

adjustment of the tail time timer by observing traffic patterns [70, 51], and (b)

using the tail time for transmissions [55, 20]. In order to fill the tail time with

transmissions, the classical approach is to aggregate packets from a single appli-

cation either by delaying packets [21], or reorganizing computation and commu-

nication leading to higher batching efficiency [82, 87]. However, our observation

is that aggregating packets from multiple applications can leverage even higher

benefits. Second, the packets are typically of small size, specially for the back-

ground services. Hence batching packets from a single app may be insufficient

to utilize the high bandwidth access links in emerging cellular networks, like

LTE. Interleaving packets from multiple apps may lead to better utilization of

the radio resource, specially in high bandwidth CELL DCH state.

This is important to note that as the access links are reaching higher bandwidth,

the bottleneck in the network is pushed back to the core. A request packet from

an app, which waits for response due to a slow or congested link in the backbone,

will force the radio to transition to idle state, and will be turned on when the

response comes back. Instead the gap can be filled by increasing the efficiency

of batching, preferably by interleaving packets from different apps.

In this chapter, our goal is to maximize the radio resource utilization in CELL DCH

state by aggregating packets across multiple apps. Higher packet aggregation re-

quires that requests from different apps may need to be delayed to synchronize

the transmissions. Each app is assigned a delay limit within which a packet

transmission request from that app must be serviced. The delay limit for an

app is calculated based on the user’s interaction with the app. Foreground app

is assigned the least delay budget (equal to the switching time from IDLE to

CELL DCH), while delay budgets of background apps are proportional to the

time of user’s last interaction with the app. This should minimally effect the

user experience. Also background apps are more delay tolerant, as supported by

Huang et al. in [47]. While modeling the overall traffic from a smartphone we

apply variable delay limits to different apps.

We propose three deadline-aware online approaches for batching packets from

multiple background apps and one foreground app, which represents a typical

smartphone usage scenario. The goal of the algorithms is to maximally utilize the
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access link in CELL DCH state by assigning app-specific variable transmission

delay. We show that significant energy gains can be achieved by efficient utiliza-

tion of the available bandwidth in CELL DCH mode by batching packets across

foreground and background applications without impacting the user experience.

We use the standard energy model of 3G network card [18] to compare the energy

gains by the online scheduling applied in Fast Dormancy, and Fast Dormancy

with 5 sec tail time operating mode of the card. Through simulation experi-

ments, we show that around 40% network card energy can be saved compared

to transmission without any aggregation. We also present an offline scheduling

approach for benchmarking and to compare performance of the proposed online

algorithms. We have also compared our strategy with other competing strategies

with gaining satisfactory results. Moreover, we have also gained around 20% in

network energy savings also in real world traces also.

The rest of the chapter is organized as follows. In Section 4.2 we describe the

models used in defining the problem. In Section 4.3 we present the problem

formally followed by three strategies for online batch scheduling. Section 4.4

shows the results of simulation experiments and Section 4.5 shows results on real

network traces.

4.2 Models and Assumptions

In this section, we describe various models that we use in formulating the problem

and developing the scheduling algorithms. We start with the network model

and explain the intuition behind the proposed approach. Next we characterize

different apps that run on the smartphones, based on their network activity

pattern. This is followed by a detailed description of the traffic model including

the list of parameters and finally we conclude this section illustrating the energy

model considered in this chapter.
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Figure 4.1: Simplified topology illustrating packet transfer over high bandwidth

access link in cellular network. Multiple small packets can be aggregated during

upload, which can reduce the need to switch off the 3G network card.

4.2.1 Network Model

First we describe the network model considered in this chapter along with its

limitations and introduce the key concept behind the proposed methodology.

We assume a cellular network model, similar to 3G UMTS discussed in Section

2.4.2, where the access links are supposed to be of high bandwidth [46]. Fig 4.1

illustrates the network model through a simplified diagram. As the access links

are becoming faster, the bottleneck in the network is shifting towards the core

cellular network, and the Internet backbone. As a result, although an upstream

request packet from the smartphone to the Radio Access Network (RAN) may

have low latency, the response packet corresponding to the request may take long

to come back. If the gap between the request and response packets are longer

than a few seconds, the radio network card will be put to sleep to save energy

wastage on the smartphone. However, the problem is, for a 3G network card,

each state transition wastes a significant amount of energy [69].

In this work, we propose that orchestrating the packet transmission, as shown in

Fig 4.1, will prevent a state transition by scheduling other request packets during

the interval between a request-response sequence. For a single app’s request-

response sequence, without card state transition, the goodput of the access link

is the total bytes exchanged over the request-response completion time. Thus

the goodput is much lower than the throughput of the access link. However, if
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packets from other apps are sent during the gap, then the goodput increases,

as illustrated in the logical view of transmission. In the figure, the upstream

and downstream packets from different apps are marked in different colors. The

physical view of transmission shows the packet exchange at the physical layer of

the card, while the logical view illustrates the idea of co-scheduling of the packets

from different applications to increase the overall goodput by maximizing the

access link bandwidth utilization.

4.2.2 Application Model

Mobile applications can be broadly categorized in following way, based on their

unique network activity or usage pattern.

Background Services (AB) : In general, these services run in the background

on smart phones. These services sync with their corresponding servers to fetch

periodic data updates. Some of the classic examples of such services include

news service, weather updates, and software updater. On the other hand, some

foreground applications spawn different background services to provide more en-

gaging experience. For example, Facebook application spawns background pro-

cesses for contact syncing service and message notification service, and Gmail

app triggers mail notification service.

Data consumption and network request pattern of background services (AB)

generally follow a specific pattern, e.g. CNN news app pulls news snippets peri-

odically.

Foreground Applications (AF ) : In general, this kind of application has a

front-end and requires active user interaction to get and provide some meaning-

ful service. Streaming apps like Youtube, gaming apps like Free Online Games,

blog reading app like Flipboard, Dolphin browser app are some of the examples

of AF with network traffic.

Data consumption pattern of foreground service (AF ) heavily depends upon the

behavior and interaction patterns of the users. Even user interaction pattern

varies from application to application; e.g. mobile browser activity generally

follows random pattern [76][62], whereas email app activity follows a power-law

with α = 1 [22]. We model these two distinct kinds of foreground applications

with two different distributions (a) random (AF − Random) and (b) power law
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(AF −Normal) to accurately reflect the intrinsic difference.

4.2.3 Traffic Model

Network activity of a mobile application depends upon the sync timing (auto-

matically set by the developer for an application like CNN news app or chosen

by the user for an application like facebook), user interaction pattern, and data

consumption during syncing or interaction. In order to synthetically generate

the traffic trace, a proper specification of the parameters is essential. In the

following, we illustrate the parameters regulating the properties of the network

traffic for foreground and background applications.

Application Sync Timing (Ψ) : This parameter decides the data sync inter-

vals for background services. In our experiments, we have considered two sync

interval threshold for the experiments : 15 minutes and 30 minutes, as these

are the typical default settings for mobile apps. For AB we have considered a

constant Ψ value, while for AF this parameter does not apply.

User Interaction Timing (Υ) : This parameter emulates user interaction

pattern with the foreground application. As [22] suggests that human triggered

decision mainly follows the pattern of high activity for a small duration followed

by inactivity for a longer duration, viz. a power-law distribution, therefore we

emulate foreground application activity by choosing Υ as a power-law distribu-

tion with α = 1. For background service AB, Υ is constant since there is no user

interaction.

We have also considered foreground applications where user’s interaction cannot

be modeled following a well-known distribution. Browsing behavior on smart-

phones has been reported recently to follow such random user interaction [76][62].

To mimic this behavior, Υ value is selected randomly within a range. For back-

ground services AB, we choose a constant Υ value.

Data Transmission Size (Λ) : When an application gets hold of the network

resource for a particular communication, amount of data transmission depends

upon the application type. For applications, like YouTube it can be up to 5MB

in a session [37] or for a background weather app, it can be around 3KB, or

for a content heavy app like flickr it can be up to 128KB [37]. This parameter

models the asymmetric behavior across application in transmitting data during
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a network session.

Bandwidth Demand (∆) : The bandwidth demands for each application is

also considered. We choose a higher value for streaming apps and lower value

for background apps.

Flexibility (Φ) : This parameter denotes the maximum allowed delay limit for

an application specific request. Φ takes lower value for packets from foreground

app, AF , and higher value for the packets from background apps, AB.

We have used the energy model illustrated in Section 2.4.3 for the experiments.

Moreover, we have adopted two different strategies [70][17] in 3G data trans-

mission, namely Fast Dormancy (FD) and Fast Dormancy with 5 second Tail

Timer (TT). In FD, tail-time (t) is considered zero and for TT, tail-time (t) is

considered as five seconds. We have assumed that, in FD, the demotion from

CELL DCH to IDLE state happens instantly bypassing CELL FACH state

without losing any energy.

4.3 Scheduling Strategies

In this section, we present a suite of algorithms for scheduling network requests

coming from different applications to optimize network device utilization. While

scheduling the requests, two important points need to be taken care of: (a) two

requests from the same application cannot be triggered simultaneously (b) to-

tal bandwidth consumption by all the scheduled requests should be bounded by

the channel bandwidth. All the requests Pij following these two constraints are

termed as compatible request.

First we present three online algorithms. The design of each algorithm is geared

towards a different class of foreground traffic, like interactive apps, browsing

or streaming. Hence an implementation of the scheduler can switch to the ap-

propriate algorithm to optimize the gains. Details of the implementation are

beyond the scope of this work. Finally, we present an Offline Scheduler algo-

rithm, which is a heuristic for co-scheduling with a priori knowledge of traffic.

Offline Scheduler serves as a benchmark to compare the online versions.
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4.3.1 Problem Description

Key concept: Let us assume that a set of applications, running in parallel,

request for network resource intermittently. Moreover, depending on applica-

tion (background/foreground), a flexibility or slack time is allowed to schedule

each packet. The task of the scheduler is to correctly schedule each applica-

tion request, exploiting the flexibility provided by the slack time, such that the

maximum number of requests can be served simultaneously; this will eventually

maximize the network card usage.

Formally, let us denote the jth network request from the application Ai as Pij.

The arrival (release) time of the request Pij is designated as rij and the actual

triggering time of the request by the scheduler is xij. Each request Pij has an

allowed slack time (flexibility) fij which means that request Pij can be scheduled

latest by rij + fij to avoid any deadline miss. Service duration of request Pij is

denoted as dij and bandwidth required to provide this service is represented as

bij.

The communication channel has a finite bandwidth B which essentially implies

that at any time instant, total bandwidth consumption of all the scheduled re-

quests must be less than B. All the scheduled requests from same application

must be sequential in nature; that means until a request Pij is served, Pik (where

k > j) can not be scheduled, i.e. xik ≥ xij + dij. Our goal is to batch and

schedule requests from all running network applications in such a manner that

network resource is maximally utilized when network radio is on so that radio

idle time is maximized.

4.3.2 Complexity of the Problem

A simplified case of the above problem arises under infinite bandwidth assump-

tion. An optimal solution to this problem can be derived, as shown later. How-

ever, imposing the bandwidth constraint turns the problem into a variant of bin

packing optimization which is NP-hard.

The reduction is achieved through the following transformation of NP-hard ver-

sion of bin-packing [42] optimization problem to this problem. Let us partition
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the entire traffic duration into unit sized time intervals and also modify the

bandwidth demand bij of request Pij to the fraction bij/B (= b′ij), where B is

the bandwidth limit of the device. Now, we can map the items of bin-packing

problem to the network requests and unit sized bins to the unit bandwidth de-

mand. Hence, the goal of bin packing to find the minimum number of bins leads

to our aim to achieve minimum duration of network usage.

4.3.3 Scheduling Algorithms

In this section, we present three scheduling algorithms - (a) Lazy Scheduling,

(b) Early Scheduling (c) Balanced Scheduling, each of which can be selectively

triggered by an implementation of traffic aware scheduler, as explained before.

Implementation of traffic aware scheduling is beyond the scope of this work.

We begin with the online algorithms. The key elements behind these three

online algorithms are two queues - (a) wait queue and (b) run queue. Wait

queue maintains transmission requests sorted according to their deadlines (for

application Ai and request j, deadline rij +fij). On arrival, a packet is placed in

the wait queue. The run queue stores the set of requests being serviced by the

network device; empty run queue implies that the device is not in CELL DCH

mode. Three algorithms introduced next differs functionally with respect to the

placement of the requests from the wait queue to the run queue.

Lazy Scheduling

The wait queue sends a trigger to the scheduler when it has at least one re-

quest (say Pij from application Ai) reaching its deadline1. On receiving the

trigger, scheduler checks if the run queue is empty (i.e. network card is not in

CELL DCH mode). If empty, it removes the request Pij from the wait queue,

along with the sequence of successive compatible requests appearing behind Pij

and places all these requests in the run queue. On the other hand, if the run

queue is not empty, it waits till it empties.

1The trigger is sent 2 seconds prior to the deadline in order to allow the radio to switch

from IDLE to CELL DCH state.
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Algorithm 4.1: Lazy Scheduling Algorithm

Input: Arrival of Requests;

Output: Scheduling of every request

Intialization: clock=1;

while True do

if packet arrives then
put it in Wait Queue;

end

if Trigger From Wait Queue == True then

if Run Queue == Empty then
Remove request(s) from Wait Queue;

Put it in Run Queue;

Trigger From Wait Queue = False;

end

end

clock++;

end

The two other scheduling algorithms function similar to lazy scheduler, except

when the run queue is not empty.

Early Scheduling

If the run queue is not empty, scheduler checks wait queue to find any compatible

request which can be scheduled. If it finds any such request in the wait queue,

scheduler removes it from wait queue and places it in the run queue.

Algorithm 4.2: Early Scheduling Algorithm

if Run Queue != Empty then
Check Wait Queue for Compatible Request;

Remove it from Wait Queue;

Put it in Run Queue;

end



4.3 Scheduling Strategies 67

Balanced Scheduling

If there are some requests in the run queue, the scheduler first checks their

compatibility in a way similar to Early Scheduler. If a request is present, Bal-

anced Scheduling strategy computes a benefit function to decide placement of the

compatible requests in the run queue. The key observation is that there are two

competing factors bandwidth wastage and deadline miss which should be accom-

modated while defining F . More formally, we can combine them additively to

reach a balance between the two factors. Therefore F can be defined as follows.

F = β ·Bandwidth wastage+ (1− β) · Experience user (4.1)

where β is a normalizing constant. Different elements of the equation are ex-

plained in detail below.

A. Bandwidth Wastage Let the maximum available bandwidth be B and let

there be n requests denoted by Pi
2, i = 1 · · · n, each starting at xi time, running

for a duration of di and requiring a bandwidth bi. Then Bandwidth Wastage

(BW) is the total available bandwidth during the active period of at least one of

the requests minus the bandwidth utilized by these requests. It can be defined as,

BW = B × T −
n∑
i=1

bi × di, T = Max(xi + di)−Min(xj), ∀(i, j)... (4.2)

Assume a packet transmission is delayed using the available slack duration, which

allows the scheduler to aggregate multiple packets together for transmission. If delaying

makes better utilization of bandwidth compared to sending it as soon as it arrives, then

the term BW1−BW2 gives the bandwidth utilization efficiency, where BW1 and BW2

denotes bandwidth wastage by delaying and not delaying packets respectively. By

normalizing the term, we get the term,

Bandwidth wastage =
BW1 −BW2

Max(BW1, BW2)
(4.3)

B. User Experience Three factors need to be considered while optimizing user

experience - (a) a deadline (rij + fij) should not be missed and (b) process the request

not too late but (c) delay the request if it helps in aggregating a number of application

requests together. Let us say the request Pij appears at time instant rij and has slack

duration fij . Let us also assume that all the network requests presently in the run

2without loss of generality we are dropping the j subscript for ease of understanding
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queue will be served completely by E (finish time). We assume that if E is very close

to rij , it is prudent to delay the request and wait for other requests to appear for better

parallelization - the probability of which decreases as the value of E - rij increases.

Consequently we formalize through the following formula,

Experience user =
E − rij+(rij+fij)

2

Max(E,
rij+(rij+fij)

2 )
(4.4)

C. Normalization factor (β) In the next set of empirical measurements, we carefully

looked at the impact of each term in Eqn. 4.1 in determining the value of F such that we

can select a value for the normalization parameter, β. The value of the normalization

parameter, β, should be such that across all traces the impact of each term is roughly

the same. With that aim we check the average number of times each term contributes

in making the value of F positive. Since at β = 0.9, the contributions of the two terms

are roughly equal, therefore, β value is set to 0.9.

Finally, for different traffic characteristics, one may need to give priority to either

bandwidth utilization or deadline miss. This is incorporated by introducing a scaling

parameter, α, to skew the importance of the two terms. It can be conceptualized with

the help of the function F described below. The α value should be ideally chosen such

that the bandwidth wastage and deadline can be optimally traded off.

F = α · β ·Bandwidth wastage+ (1− α) · (1− β) · Experience user (4.5)

where α varies between 0 and 1.

Algorithm 4.3: Balanced Scheduling Algorithm

if Compatible Request found in Wait Queue then
Evaluate F function;

if F>0 then
Remove it from Wait Queue;

Put it in Run Queue;

end

end

Observe that there are two factors involved in F and both ranges from −1 to 1. When

F becomes positive for any request then it is removed from wait queue and placed

in the run queue. In this way, this algorithm ensures that only those compatible

requests are scheduled which ensures minimum bandwidth wastage and low deadline

miss probability.
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4.3.4 Offline Scheduler

In order to evaluate the performance of the aforementioned online algorithms, one

needs to have a proper benchmark solution. Here we outline an approach which sched-

ules a sequence of requests in a semi-optimal way such that the maximum number of

requests can be served in parallel. It is assumed that the global information about the

applications (request arrival time, service time, bandwidth requirement) are available

a priori; in that aspect, this scheduling approach is offline. This algorithm is split into

two components; first part drops the bandwidth constraint and only aims to maximize

the number of applications which can be served in parallel adhering to the allowed

slack time assigned to each application. Here, the only constraint we have is that two

requests from the same application can not be scheduled at the same time. Subse-

quently, we incorporate the bandwidth constraint and finalize the solution.

Let us assume that the n×m (where n is the number of applications running in par-

allel and every application issues m requests) number of requests P11, P12, ...., Pnm are

sorted according to their arrival time. Here we try to batch different requests together

for final scheduling by adjusting the allowed slack time. First we demonstrate the

principle behind the approach for only two requests Ai and Ak and then generalize the

solution for n×m requests. The concept here is to identify that whether two requests

Pij and Pkl (with arrival time rij , rkl, allowed slack time fij , fkl, service time dij , dkl

respectively), coming from two different applications Ai and Ak (rkl > rij) can indeed

be served in parallel. This problem essentially boils down to the problem of finding

overlap in the service period between two requests Pij and Pkl. The following three

different cases may arise, for each of which offline scheduler takes appropriate action

to properly schedule the request.

Mathematically, the action taken by the scheduler for scheduling two requests Pij and

Pkl is designated by the operator ⊕ and the outcome of the scheduler (which is essen-

tially the actual triggering time xij and xkl of the requests Pij and Pkl respectively) is

stored in function BS(Pij , Pkl).

Case (1): No overlap is possible: This case can be identified by the condition

rij + fij + dij < rkl (4.6)

Action ⊕: This is the worst case. Since no overlap is possible, hence scheduler will

trigger those requests as soon as they arrive (see Fig. 4.2).
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Time Axis

rij rkldij
dkl

Figure 4.2: Schedule requests as they arrive when overlapping is not possible.

Case (2): Full overlap is possible: This is the best case. In this case, one network

request can completely imbibe the other request within it and can be identified by the

following condition

rij + fij + dij > rkl (4.7)

and

fij > (rkl − rij) (4.8)

Action ⊕ : In this case, starting time of one request (say Pij) can be shifted forward

by the amount (rkl − rij) such that both the requests Pij and Pkl can be scheduled at

the same time.

Time Axis

rij rkl

dij
dkl

rkl+dij

Figure 4.3: When slack of first request is more than the gap between arrival of two

requests then requests can be fully overlapped.

Case (3): Partial overlap is possible: This case can be identified by the condition

rij + fij + dij > rkl (4.9)

and

fij < (rkl − rij) (4.10)

Action ⊕: In this case, the algorithm shifts the starting time of Pij by fij (see Fig. 4.4)

which would result in partial overlapped schedule.

Time Axis

rij rkl

dij dkl

rij +fij

Figure 4.4: When slack of first request is less than the gap between arrival of two

requests then requests can be partially overlapped.
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Generalization for n×m requests

In a nutshell, BS(Pij , Pkl) = BS(Pij)⊕BS(Pkl) provides us the optimal scheduling of

two requests Pij and Pkl based on the above three cases. Capitalizing on this observa-

tion, we generalize the scheduling action ⊕ for n×m requests X1, X2, ...., Xnm using the

optimal substructure property, which results in the following dynamic programming

formulation

BS(X1, X2, ...., Xnm) = min(BS(X1, ..., Xq)

⊕BS(X(q+1)...Xnm)) (4.11)

where q varies from 1 to n×m− 1.

We can easily find a suitable q minimizing the above function which eventually provides

us the optimal scheduling time for all the n×m requests.

Incorporating bandwidth constraint

The formulation described above provides us an optimal schedule for a set of requests

Si at time ti. Next, we select a (possibly proper) subset of requests Siu from this set Si

respecting the bandwidth constraint, which essentially means that the total bandwidth

consumption of the requests in set Siu is limited to the total available bandwidth B.

The leftover requests (Si − Siu), if any, will be suitably shifted (forward/backward) to

a point where bandwidth violation can be avoided.

4.4 Evaluation

In this section, we evaluate the performance of batch scheduling techniques using

simulation experiments. We describe the experimental setup, followed by analysis of

the results.

4.4.1 Experimental Setup

The simulation experiments are driven by synthetic traces representing smartphone

traffic. The traces are generated using the models defined in Section 4.2.3. We gener-

ate traffic from one foreground app which the user is using, and multiple background
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Algorithm 4.4: Offline Scheduling Algorithm

Input: Number of requests:n;

Requests[1...n];

Output: Scheduling of every request

Intialization: size=1;

while size < n do
start =1;

end = n - size;

while start < end do
Compute BS(Request[start],...,Request[start+ size− 1]);

if violates bandwidth constraint then
Remove violation;

end

start++;

end

size++;

end

services. In order to mimic different usage scenarios in the foreground, such as in-

teractive app, streaming app, and browsing, we generate traffic from three different

combinations of apps.

Table 4.1: Foreground and Background App Parameters used in Synthetic Trace

Generation
App Type Sync Time

(s)

UI Time

(s)

Data Tx

Size (KB)

Bandwidth

Demand

(KBps)

Slack Du-

ration (s)

Ψ Υ Λ ∆ Φ

AB 900,1800 5,10,15 3,5 [40] 10 5-7

AF -Normal NA Power-law

[22]

3,5 [37] 5,15,40 2

AF -Random NA 2-20 [76] 3-50 [37] 20 2

We set the total capacity of the access link to 50 KBps in CELL DCH state. We

model two different types of foreground apps, AF −Normal and AF − Random (see
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Section 4.2.2) using the parameter values defined in Table 4.1. Background apps are

assigned variable slack time values - 5, 10 and 15 seconds. Data transfer size (or packet

size) for each app is also varied within a range as shown in the Table 4.1.

Different foreground user activity is captured by changing the foreground app band-

width demands. The bandwidth demand for interactive gaming app is 5 KBps, for

streaming app 40 KBps, and for browsing app 15 KBps. Gaming and Stream-

ing scenarios comprise of one foreground app, modeled as AF − Normal traffic and

bandwidth demand from Table 4.1, and three background apps. Browsing scenario

comprises of one foreground app, modeled as AF −Random traffic with 15 KBps band-

width requirement, and three background apps. We also evaluated the performance of

foreground app in presence of an increasing number of background apps. Traffic trace

for each scenario is of length 1 hr.

4.4.2 Evaluation Metrics

We use multiple metrics to analyze the energy performance and the impact on user

experience.

Energy Consumption per KB (EKB): This metric captures energy spent to trans-

mit one KiloByte of data over the network interface. It considers ramp up energy,

transmission energy and tail energy.

Average Slack Duration (µSD): It is defined as the average slack across all requests.

Mathematically it can be expressed as 1
n ×

∑n
i=1 slacki. µSD is used to understand the

slack experienced by the packets from foreground traffic.

Deadline Miss Frequency (DF ): It is expressed as, Total Number of Deadline Miss
Total Number of Request .

This is also used to capture the impact on foreground traffic.

Two other metrics are used to gain insight into the source of energy gains. These are,

Percentage of Radio On Time (RON): This metric captures the radio on time

as a percentage of total data transmission duration. We will use this metric to reason

about the energy savings.

Switching Frequency (SF ): It is defined as number of switching (IDLE→ CELL DCH

and CELL DCH/CELL FACH → IDLE ) per unit time.

Finally, we also define a Baseline Scheme for data transmission, where a network

packet is serviced immediately. If the radio is on, i.e. in CELL DCH state, then

the packet transmission is immediate. If the radio is in sleep (IDLE), then 2 seconds
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are required to switch to on state before transmission triggers. The Baseline Scheme

provides a benchmark for understanding the gains over standard scheduling.

4.4.3 Energy Gains

We report the energy savings under different scenarios in terms of EKB. First, we

show the results for Gaming and Streaming scenarios, where the foreground app is

modeled as AF − Normal. Fig. 4.5(a) and Fig. 4.5(b) show the energy consumed to

transmit per KiloByte of data across all the entire foreground and background traffic

for Gaming and Streaming scenarios respectively. We compare three online schemes

against Baseline Scheme and Offline Scheduling. We also show the results for the two

modes - Fast Dormancy (FD) and Fast Dormancy with 5 sec tail timer (TT ).
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(a) Gaming Scenario
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(b) Streaming Scenario

Figure 4.5: Comparison of Energy Consumption per KB of data transmission for

different schemes in Gaming and Streaming scenario.

For the FD mode, Baseline consumes 0.34 J/KB for Gaming, and 0.32 J/KB for

Streaming, whereas Offline consumes 0.17 J/KB and 0.15 J/KB respectively. Baseline

and Offline depict the worst case and best case in terms of energy consumption. The

online techniques are comparable in their energy consumption requiring between 0.18

J/KB to 0.2 J/KB. Although an ideal gain of 50% can be achieved, as shown by Offline

scheduling, the online versions can reach 40% energy gain compared to the Baseline

scheme. Note that for the Streaming scenario, power consumption is marginally lower

than that of the Gaming scenario. Since the total data transmitted is much higher in

streaming case, radio on time is utilized more effectively.
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In the TT mode, the energy consumption is reduced further. For the Baseline case

alone, there is 30% less energy requirement compared to the FD mode. The gain

can be attributed to the reduction in the number of card state transition. Since a

state transition from IDLE to CELL DCH consumes significant amount of energy,

by saving the transition, Baseline TT mode gains over Baseline FD mode. However,

the gains for the online, as well as, offline techniques are not as significant in TT mode.

Tail time reduces total energy consumption by reducing switching. As the gain in TT

mode is not significant compared to FD mode in our schemes, we can conclude that

our schemes could not leverage the tail time to reduce enough number of switching.

In Section 4.4.5 we take an in-depth look in switching frequency data. Still, the online

techniques perform 10% to 30% better compared to Baseline scheme. In the next
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Figure 4.6: Comparison of Energy Consumption for different schemes in Brows-

ing scenario.

experiment, we evaluate the energy consumption for the Browsing scenario, where the

foreground browsing traffic is modeled as AF −Random. Fig. 4.6 shows the results for

energy consumption per KB of data transmission compared across all the scheduling

schemes. Offline scheme shows 60% savings over Baseline scheme in FD mode. In

FD mode, the online schemes save around 25% compared to Baseline. In TT mode,

Baseline scheme again shows energy savings of 25% by reducing switching frequency,

while the gains for the online schemes are between 5% − 10%. The key observation

is that even when the foreground traffic pattern is randomly distributed, the online

scheduling scheme can aggregate packets effectively to reduce energy consumption.
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4.4.4 User Experience

We evaluate the user experience with respect to the impact of online batch scheduling

on the foreground app traffic. We measure the slack suffered by the foreground traffic,

and the fraction of packets that miss their deadlines, which will impact responsiveness

of interactive applications. In this experiment, we increase the number of background

app to 6. We also use the Streaming scenario which has the highest bandwidth demand,

thereby presenting the most demanding case to handle during scheduling.
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Figure 4.7: Average slack incurred by foreground app packets with different

schemes in presence of varying number of background apps.

Fig. 4.7 shows the average slack incurred by the foreground packets. The Offline scheme

confirms that it is possible to maintain a low average slack for the packets. The online

schemes incur ≈ 0.8 second average slack, which increases to 1.2 second slack with

6 background apps. Even the worst value of standard deviation for the slack is 0.14

second indicating none of the packet incur a high slack. Though performance of online

algorithms are little bit low compared to offline algorithm, degradation of performance

with increasing load is very graceful.

The next experiment measures the number of foreground packets which missed their

deadlines. Fig. 4.8 shows the fraction of foreground packets that missed their deadlines.

Surprisingly, performance of Lazy Scheduling is better than that of Early Scheduling

and Balanced Scheduling. Since Early Scheduler, as well as Balanced Scheduler, may

schedule some compatible requests when there is any request in the run queue, there-

fore, any request which is not compatible and waiting in wait queue may remain in-

compatible and kept waiting, thereby missing its deadline. By design Lazy scheduling

avoids this scenario and schedules requests in deadline priority basis, thereby reducing

the number of deadline misses. Balanced Scheduling shows mixed characteristics of
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Figure 4.8: Fraction of overall packets from foreground app missing deadline

with different schemes in presence of varying number of background apps.

Early Scheduling and Lazy Scheduling as it does not schedule a compatible request

unconditionally even when run queue is not empty (radio is on).

4.4.5 Insights into the Gains

In this section, we give an in-depth view of the reasons for the energy gains by mea-

suring the radio on time, and switching frequency of the card.
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(a) Streaming scenario
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(b) Browsing in presence of 6 background

apps

Figure 4.9: Percentage of duration when the radio was ON for the two energy

models (FD and TT ) and for different schemes in Streaming and Browsing sce-

narios.

In the first set of experiments, we measure the radio on time for each scheme. Fig. 4.9(a)
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shows the percentage of radio on time with different energy models (FD and TT ) for

the Streaming scenario. Experiment with FD energy model shows radio on time is ≈
38% for Baseline scheme while it is around 15% for the Offline algorithm. Radio on

time percentage for online algorithms ranges from 17%-19%. So in FD energy model,

in terms of radio on time percentage, online algorithms perform far better than Base-

line scheme.

With TT energy model, percentage of radio on time in CELL DCH mode remains

same for all the schemes. However, radio remains in CELL FACH mode for a

significant amount of time for every scheme. Result shows that Baseline scheme

stays in CELL FACH mode around 60% to 62% of time. Offline scheme stays

in CELL FACH mode for around 42% of time, whereas online algorithms stay in

CELL FACH mode for 80% of time. So, radio on time including both CELL DCH

and CELL FACH modes are almost comparable for Baseline and all the online

schemes. However, significantly low CELL DCH time of online algorithms compared

to Baseline scheme justifies low energy consumption of the online algorithms.

Fig. 4.9(b) shows the radio on time percentage with different energy model (FD and

TT ) and with various schemes for Browsing scenario. Here also we see similar char-

acteristics of different schemes as in Streaming scenario. However, as Streaming uti-

lizes available bandwidth more effectively than Browsing, radio on time percentage

for Streaming is less than Browsing. In the next experiment, we study the impact
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(a) Streaming scenario
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(b) Browsing in presence of 6 background

apps

Figure 4.10: Switching frequency comparison with two energy models (FD and

TT ) and for different schemes in Streaming and Browsing scenarios.

of the number of state transitions by the network card. Fig. 4.10 shows the switch-

ing frequency with different energy models (FD and TT ) and with various schemes.
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Experiments with FD energy model show, switching frequency is 0.48-0.5 for baseline

scheme while it is around 0.22-0.25 for offline algorithm3. However, it is little bit higher

≈ 0.32 for all online schemes.

With TT energy model, switching frequency reduces drastically to 0.01 for baseline

scheme. However, switching frequency of offline scheme does not change much com-

pared to FD mode as CELL DCH mode in offline algorithm is well separated. So

even with tail timer on, Offline algorithm reduces switching marginally. Moreover,

though all online algorithms stay in CELL FACH mode for a significant fraction

of overall time, it reduces switching only by 50%-70%. Similar to offline algorithm,

CELL DCH mode in online algorithms are also well separated, however, not as good

as in the Offline case. So energy savings in proposed online algorithms, specially in

TT mode cannot be attributed to lower switching frequency.

4.4.6 Competing Scheduling Techniques

As we find out that balanced scheduling works well for different scenarios, we compare

it with other three different techniques - TailEnder, Tail Optimization Protocol (TOP),

and Performance-aware Energy Scheduler (PerES). We present implementation details

of these techniques.

TailEnder: TailEnder [20] uses threshold based tail time prediction by considering

deadlines of packets of an application. In principle, it delays packets as-long-as-possible

without affecting user experience. We extend TailEnder [20] to prevent tail energy

wastage across multiple applications, instead of original design aimed at single appli-

cation. This naive implementation introduces per application separate queues which

are serviced according to the TailEnder heuristics using a simple round robin order.

PerES: Performance-aware Energy Scheduler or PerES models cross application energy-

delay tradeoff as an optimization problem and applies Lyapunov optimization frame-

work. It assumes that the wireless channel bandwidth is variable.

The implementation depends on choice of several parameters. The chosen parameter

values, based on [84], are as follows. δ value of SVA is 0.001, application preference

weights are 1/10 (for foreground application) and 1/100 (for background application),

θ value is taken as 10, wireless signal as taken uniform randomly from the range of

3Note that the average number of requests per second is 0.83.
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−50 dBm to −110 dBm, and application details are according to Table 4.1.

TOP: Tail Optimization Protocol (TOP) reduces tail energy wastage by predicting

the application behavior [70]. Since te paper claims that tail time can be predicted

with 60% accuracy, therefore, for 60% of the uniformly randomly chosen application

traces, we assume that TOP is aware of the packets apriori. The remaining parameters

are based on Table 4.1.

4.4.7 Results after comparing with competing schemes

In the following paragraphs, we will discuss different energy and deadline miss related

results found after comparing our balanced schemes with different competing tech-

niques.

1. Energy Gain In this experiment, we focus on how much energy is saved using our

proposed balanced scheduling. We compare energy consumption of balanced schedul-

ing against competing techniques, described in Section 4.4.6 in both Fast Dormancy

(FD) and Tail Timer (TT ) mode of operation. Fig. 4.11 shows the results for three dif-

ferent traffic traces. For gaming and browsing, Balanced scheduling performs similar to

Figure 4.11: Comparing energy usage of competing scheduling strategies in Fast

Dormancy and Tail Timer, with 5 sec tail time, modes. We compare three

scenarios - gaming, streaming and browsing for the chosen α values.

PerES and TOP, but better than TailEnder. These two scenarios represent interactive

foreground applications with relatively smaller request size, and reduced opportunity

for delaying a request. Hence the gains are marginal compared to the other techniques.
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Note that in streaming, as the packets are larger in size, and higher delay in transmis-

sion can be tolerated, there is more opportunity for aggregation. Therefore, Balanced

Scheduling performs much better than the other techniques.

The energy consumption in TT mode is less than that of the FD mode. When network

traffic is sufficiently high, then in TT mode the card transitions from FACH to DCH

state, thereby expending less energy compared to a transition from IDLE to DCH

in FD mode. The lower energy spent in each transition, and often the low number

of transitions, as verified with more experimental results later, leads to better energy

savings in TT mode.

2. Deadline Miss

Figure 4.12: Comparison of percentage of deadline miss for competing scheduling

strategies.

In our technique we introduce an application specific variable slack duration to each

request. Ideally a packet should be transmitted within this slack such that user experi-

ence is not impacted. In this experiment, our goal is to study the impact of increasing

number of background processes on the number of packets that miss the deadline.

Lower deadline miss implies better user experience. The results record the deadlines

missed by packets from foreground process since this number directly impacts the user

experience. Fig. 4.12 shows the results of deadline miss percentage for all the compet-

ing techniques, and for three different scenarios, where the α values are same as the

ones to obtain the energy consumption results.

There are several observations based on the results. First, Balanced scheduling per-

forms better than the other schemes in terms of missed deadlines. PerES and TOP
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perform better than TailEnder since these two techniques are designed for cross ap-

plication scheduling, unlike TailEnder which have been extended for cross application

scenario. Second, with increasing background process count, deadline miss increases.

The background processes start consuming the bandwidth although their slack du-

ration is higher than foreground processes. This leads to more foreground requests

missing their deadline. Third, in Browsing scenario PerES and Balanced scheduling

has similar deadline miss, however, in other two scenarios, Balanced does better.

4.5 Real Trace based Evaluation

In this section, we firstly talk about the real trace collection methods employed and

later we illustrate real trace based results.

4.5.1 App Specific Real Network Trace Collection

All the experiments in this work are done upon the synthetic data due to lack of

availability of real app specific network data. To achieve that we have taken the

following ways which will provide us with a rich set of app specific network data.

Following are the two ways which we have explored:

Using V pnService in tPacketCapture Pro app on unrooted phone : We have

used tPacketCapture Pro app which is available in Google Play to collect app specific

network data in pcap file and analyzed in WireShark. It uses VpnService (available

in Android Version 4.x) to sniff the app specific packets and records it in a pcap file in

phone’s storage. The good part is that it can run on any phone but the bad part is it

can not record data of multiple apps simultaneously dew to limitation in V pnService

module.

Using netstat, tcpdump, and adb on rooted phone : On the other hand, we

have also tried to collect app specific network trace data as hinted by Falaki et. al. [40]

on rooted phones connected to PCs via USB. We have used android specific tcpdump

implementation on ARM hardware to collect all network packets of a rooted HTC

Desire phone running Android 2.3.5. We also used netstat via adb shell to get port

to PID mapping on network packets and approximately able to classify app specific

network data. As this method works only for rooted phones connected to PC, higher
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scale user data collection is not feasible. However, we have employed this method for

data collection as it gives approximately accurate scenario of parallel network activities

of apps.

4.5.2 Real Trace based Results

To test the practicality of our ideas, we have collected network traffic trace of 1 hour

normal usage on a rooted android powered Samsung Galaxy S3 GT19300. To accom-

plish this, we have run tcpdump in usb connected phone and netstat tool for android

through adb in laptop. By mapping the ports to process ids, we have differentiated

application level traffics. For foreground apps and background apps, we have desig-

nated 5 seconds and 50 seconds of slack duration respectively. This collected network

trace mostly follows the pattern of clearly separated grouped traffics of small duration

requests, having 3 foreground apps and 10 background services. The grouped nature of

the traffic stems from the reason that a single foreground application creates multiple

connections for providing different contents to the users at a single time.
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Figure 4.13: Comparing Energy Consumption of different schemes in Real Trace.

Fig. 4.13 shows that in FD or TT mode, our algorithms perform ≈ 20% better than

the baseline Baseline system for this specific usage trace. In this scenario, energy con-

sumption of Baseline system is around 0.31 J/KB whereas our algorithms consume

approximately 0.25 J/KB. As expected, Offline scheduler performs best with lowest

energy footprint, i.e., around 0.2 J/KB. This gain is lesser than our simulated results

due to the grouped traffic nature of the trace and lesser number of concurrent app

requests, giving our techniques lesser opportunity to aggregate and to reduce switch-

ing. But, this small value will contribute to a significant energy benefit if the data
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transmission increases. However, deadline miss percentage or average slack duration

is greater in Baseline compared to our techniques, which will enforce degraded user

experience.

Comparing with Competing Techniques : Fig. 4.14 shows the energy usage

of Balanced scheduling compared to the other techniques. Energy used by Balanced

Scheduling is about 10% less than the competing techniques.
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Figure 4.14: Showing energy required to transfer one KB data across different

scheduling algorithms on collected real trace (browsing).
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Figure 4.15: Showing deadline miss frequency across different scheduling algo-

rithms on collected real trace (browsing).

The performance gain is lower compared to that of simulation results due to the nature

of the real trace. The network traffic is grouped in nature since a foreground app

spawns multiple background threads which trigger network requests at the same time.

Such grouping limits the scope of aggregating traffic and reduce state transitions.

Fig. 4.15 shows the corresponding deadline miss. Balanced Scheduling performs better

than other techniques in this aspect.
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Conclusions & Future works

In this chapter, we summarize the main contributions of the thesis and outline our

achievements in comparison to the objectives set up in the introductory chapter. Fi-

nally, we wrap up by pointing out some of the possible future directions of research

that have been opened up by this thesis.

5.1 Summary of our contributions

In this thesis, our main contributions are the following.

1. Proposing a detailed framework for localization using Virtual Landmarks

: We have proposed a detailed framework to find stable smartphone based virtual

landmarks, which can help mainly in indoor localization. We have built a working

system called Landmarker using that framework and have performed extensive testings

in different scenarios with satisfactory results.

2. Analyzing stability of Virtual Landmarks : We have identified the factors

that might affect the stability of virtual landmarks namely device, time and the phone’s

user. An extensive study has shown us that even though they affect the stability

of landmarks, their level of impact is varied. Device heterogeneity affects the most

(even when the phones are from the same manufacturer’s and of the same series).

Time heterogeneity also affects the stability of a landmark, which is expected as the

surroundings change from time to time. However, the effect of user level heterogeneity

is the least contributing factor in instability of a particular landmark. This result is

85
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assuring because modeling the heterogeneity of devices is easiest and one can build

separate virtual landmark database pertaining to each class of device. On the other

hand, if the result would have varied across users, identifying similar class of users and

building database corresponding to each class would have been impossible.

3. Building Applications using Virtual Landmark based Localization Tech-

niques : We have built a retail analytics cum shopping application in android

platform called RetailGuide using stable virtual landmarks. We have found through

various experiments that the stability of landmarks make RetailGuide application more

robust and real-world ready. Through detailed experiments with recruited volunteers,

we find not only the accuracy of the system but we also find varied amount of emo-

tion/opinion about same products being posted by the volunteers thus bringing forward

the importance of such app. Moreover, the initial idea of SignFinder app for creating

virtual signboards seems quite promising. In future, we hope that virtual landmarks

will form the basis of a suite of interesting applications.

4. Cellular Energy Consumption Reduction through Smart Scheduling of

Network Traffic generated by various Applications : Research on energy op-

timization for 3G network card on smartphones has focused on tail time adaptation,

and batch scheduling single app traffic. In this thesis, we extend the research by de-

signing techniques for batch scheduling across multiple apps. We consider the typical

smartphone usage scenario of one foreground app and multiple background services

being operative and generating traffic. We introduce variable delay budget allocation

per app based on user interaction, which helps in maintaining high user experience.

We have proposed three deadline aware online algorithms for batch scheduling. Our

simulation studies based on modeling of the overall smartphone traffic and 3G energy

models show 40% energy savings in the best case and around 10% energy savings using

real smartphone usage traces. Moreover, our approach has also performed competi-

tively with other approaches of network energy savings. An important observation

from this work is that better utilization of available bandwidth in CELL DCH state

leads to significant energy gains, both in Fast Dormancy and Fast Dormancy with

Tail Time operating modes. The insight can augment other approaches in 3G energy

optimization and help further in 4G energy optimization.
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5.2 Future Directions

In this final section, we outline a few out of the many possible directions of future

research that have been opened up by this thesis.

1. Augmenting Virtual Landmark based Indoor Localization : We have

viewed virtual landmarks as stand-alone system for specifically indoor localization.

However, there are also other indoor localization systems like FM-based or RFID-based

as discussed in Section 2.2. So, if we intelligently include virtual landmarks in these

localization systems, then it can give a more accurate and robust localization system.

However, a detailed investigation is needed to look into the energy or deployment cost

of such a system.

2. Using Virtual Landmarks in other Applications : We have shown the usabil-

ity of virtual landmarks in localization through apps like RetailGuide and SignFinder.

But, there are possibilities of numerous applications based on these smartphone based

virtual landmarks. For example, in this age of Google Glass, augmented reality ap-

plications can benefit from this infrastructure-free localization system to reduce the

search space of information for augmenting a particular location space. Moreover, we

also can create many location based games like treasure hunt among users located at

different places.

3. Developing a Network Activity Recording tool for Applications : While

collecting real world usage traces from different smartphone users, we have faced a

series of difficulties. There is no app in the market for unrooted phones which can help

in smooth recording of application specific network activity. So, there is a great need

of a good app specific network activity measuring tool. It will help the developers in

building efficient applications and also help the researchers to properly evaluate their

ideas.

4. Building a Middleware for Aggregating and Scheduling Application Re-

quests : One can build a middleware in smartphones to aggregate the network

requests across applications, which will reduce the energy footprint of applications.

5. Extending the idea of Aggregation for other resources : One can extend

this idea of aggregation of different requests of similar resources to avoid redundancy

and can save energy. For example, requests for energy hungry resources like GPS or

sensors can be aggregated and consequently energy can be saved.
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