
75

Smartphone-based Acoustic Indoor Space Mapping
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Constructing a map of indoor space has many important applications, such as indoor navigation, VR/AR, construction, safety,
facility management, and network condition prediction. Existing indoor space mapping requires special hardware (e.g., indoor
LiDAR equipment) and well-trained operators. In this paper, we develop a smartphone-based indoor space mapping system
that lets a regular user quickly map an indoor space by simply walking around while holding a phone in his/her hand. Our
system accurately measures the distance to nearby re�ectors, estimates the user’s trajectory, and pairs di�erent re�ectors the
user encounters during the walk to automatically construct the contour. Using extensive evaluation, we show our contour
construction is accurate: the median errors are 1.5 cm for a single wall and 6 cm for multiple walls (due to longer trajectory
and the higher number of walls). We show that our system provides a median error of 30 cm and a 90-percentile error of
1 m, which is signi�cantly better than the state-of-the-art smartphone acoustic mapping system BatMapper [64], whose
corresponding errors are 60 cm and 2.5 m respectively, even after multiple walks. We further show that the constructed
indoor contour can be used to predict wireless received signal strength (RSS).
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1 INTRODUCTION
Motivation. There is a surge of interest in getting indoor structural information for a variety of purposes, such as
indoor localization and navigation, network optimization, augmented reality (AR), virtual reality (VR). Speci�cally,
an indoor map helps users to localize within indoors and to navigate inside the buildings. This is important
since users spend approximately 80% of their time indoors [43]. However, such maps are rarely available, which
becomes a major barrier in realizing ubiquitous indoor location based services (LBS). Additionally, thanks to
recently released ARCore [3] and ARkit [4], there has been a rise in new AR applications, such as Ikea Place [10],
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Housecraft [9], AR MeasureKit [5] etc. These applications enable users to try out furniture, to achieve seamless
home renovation, and to experience immersive games (which blends AR objects with the user’s surrounding).
These applications demand contextual structural information of the indoor space. In addition, home surveillance
robots and autonomous home cleaning equipment require indoor maps to enhance their accuracy and coverage;
and 360� videos also require indoor mapping to provide realistic and engaging experience. Furthermore, structural
information allows us to accurately predict signal propagation and yield accurate estimation of wireless signals,
which can be used for optimizing access points (AP) placement, selection, and rate adaptation. These applications
call for a fast, low-cost, and easy-to-use indoor mapping system and can tolerate errors of a few centimeters.
The existing approaches generate indoor maps either manually or using specialized sensors (e.g., laser

rangers [57], depth cameras [41], sonars [29, 32]). The high cost of these approaches signi�cantly limits the avail-
ability of indoor maps. Recently, some works [21, 26, 31, 34, 38] use crowd-sourcing to reduce deployment cost.
However, crowd-sourcing incurs signi�cant overhead and takes much longer to get the indoor maps. Meanwhile,
it also raises incentive and privacy issues.

In terms of the types of techniques, cameras, LiDAR, and specialized sensors are often used for map construction.
Vision-based approaches provide detailed indoor maps, but are computationally expensive, sensitive to lighting
conditions and image quality, and raise privacy concerns. LiDAR are still costly and have trouble with transparent
materials (e.g., windows, glass doors), which is common in indoor settings. Microsoft Hololens [14], Google’s
Project Tango tablet [18], Oculus VR headset [15]) combine multi-camera and multi-depth sensors to improve
accuracy. However, they are costly and have slow adoption [11, 13].

Our Approach. Inspired by many applications of indoor mapping and the lack of widely available tools, we
develop a novel acoustic-based system for indoor map construction. It has several distinct bene�ts over the
existing solutions: (i) it is low-cost and can be implemented on a smartphone without any extra hardware, and
(ii) it is robust to ambient lighting conditions and transparent materials.

In our approach, we let a smartphone emit audio signals and analyze the signals re�ected from the environment
to infer the structure of indoor space. Our solution provides an infrastructure-free system to get the depth
information by utilizing built-in speakers and microphones on smartphones. We develop a system, called SAMS
(Smartphone Acoustic Mapping System), to get the indoor contour by just moving around while holding a
smartphone. Speci�cally, SAMS applies Frequency Modulated Continuous Wave (FMCW) technology to estimate
the distances to the nearby objects (e.g., walls, doors, and shelves). We �nd that existing audio based tracking
works [45, 48, 62] focus on getting only the shortest path or one moving path. The latter is achieved by �nding
the di�erence between consecutive samples to cancel out static multi-path. In comparison, we explicitly leverage
multiple peaks in the FMCW pro�le to get critical structural information like corners or clutters, which are
important for accurate map construction. Furthermore, we employ customized Inertial Measurement Unit (IMU)
sensor based dead-reckoning combined with these distance measurements and systematic geometric constraints
to derive contour of the surroundings in a calibration-free manner. We generalize our approach from a single
wall setting to a multi-wall setting, account for clutters, and support both straight and curved surfaces.

As one can imagine, SAMS can readily help in enabling interesting applications like navigation for blind people
(by detecting obstacles), enriching AR/VR applications, or helping in indoor construction (as illustrated in Fig. 1).
SAMS can even provide semantic information of physical spaces (e.g., corners, corridors) by analyzing re�ected
acoustic pro�les, and furthermore, the mapping from SAMS can help in wireless signal strength prediction.
We demonstrate this utility of our system by feeding the constructed indoor map to predict wireless received
signal strength (RSS). We �nd that it yields accurate RSS prediction (within 1.5-2 dB error) and thus can help in
application performance improvement. Another use-case might be to augment light-based distance estimation
technique employed in Hololens or small LiDAR [1], in the cases of transparent or glass-like material in indoor.
This acoustic based distance estimates will help these devices to create more accurate surrounding mapping
templates.
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(a) Detecting Obstacles for People. (b) Enriching AR/VR Application. (c) Helping in Construction Works.

Fig. 1. Possible Applications of Proposed SAMS System.

Our work is related to signi�cant research on acoustic based motion tracking, gesture recognition, and activity
detection [44, 47, 48, 50, 62]. In particular, BatMapper [64] system is the closest work to ours. It also uses acoustic
signals to map the indoor space. However, BatMapper requires signi�cant training to derive the parameters in its
probabilistic algorithm, and requires multiple walks around the same space to generate the contour due to the
underlying assumption. Furthermore, the paper does not specify how to construct the contours of the arbitrarily
shaped surfaces. In comparison, our system eliminates the need of training, can support arbitrary contour and
generate an indoor map by walking once around the space.
Our major contributions include: (i) applying FMCW-based distance measurement to contour construction

by exploring its design parameters, studying its sensitivity under various environmental factors, and extracting
features from FMCW pro�les to identify the types of re�ectors, (ii) realizing an infrastructure-free smartphone-
based acoustic indoor mapping system that can support straight and curved surfaces, handle multiple objects, and
automatically identify and remove clutters, and (iii) conducting extensive evaluation and applying the contour
construction to predicting wireless signal strength. Our results show that SAMS signi�cantly out-performs
BatMapper and improves received signal strength (RSS) prediction.

Outline. The remaining paper is organized as follows. In Section 2, we overview our system. We present our
detailed approach in Section 3. We describe the experiment setup in Section 4 and evaluation results with a
comparison with BatMapper [64] in Section 5. We show the feasibility of predicting RSS based on the constructed
indoor contour in Section 6. Finally, we review the related works in Section 7 and conclude in Section 8.

2 SAMS: OVERVIEW
In this section, we brie�y outline how SAMSmaps an indoor space. As illustrated in Fig. 2(a), a user walks around
an indoor space while holding a smartphone in hand. SAMS running on the smartphone emits audio signals and
analyzes the re�ected signals to get the distance to nearby objects. Meanwhile, it estimates the user movement
trajectory, and combines it with the distance estimation to create the contour of indoor space.
Fig. 2(b) illustrates the high-level ideas employed in SAMS. SAMS emits FMCW based audio chirps and

analyzes the received signals to estimate relative distances between the phone and walls. It also identi�es the
corner and ceiling/�oor, which are critical in forming the shape. Meanwhile, SAMS includes our dead-reckoning
method [24, 51, 59]: it compensates for user’s sway movement to get a correct user movement trajectory. Next, it
synchronizes the measured distances to the nearby objects with the user trajectory using walking steps and turns
them as synchronizing events. Afterwards, it removes outliers by applying geometric constraints and polynomial
�tting techniques to get the indoor space contour. After a single walk around a room or indoor space, the user
can accurately construct the indoor space. We further show that we can reduce the user pro�ling e�ort by using
two microphones on the smartphone to simultaneously create contour of two walls in a corridor. SAMS is a
single-step calibration-free fast indoor space mapping solution.
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Fig. 2. SAMS System.

3 SAMS
SAMS consists of three main modules: distance estimation to nearby objects, dead-reckoning module to determine
the user trajectory, and contour construction. In this section, we describe each of these modules in detail.

3.1 Distance Estimation
This module estimates the distance from the smartphone to the nearby objects (e.g., walls, doors, shelves). We
use FMCW to estimate the distance. Acoustic FMCW has been used in previous works (e.g., [45, 47]), but those
schemes were not designed for mobile and co-located microphone-speaker setting. Therefore, we perform non-
trivial customization of FMCW based technique to improve accuracy in our settings. Below we �rst provide a
brief overview of FMCW and then present our customization.

𝒇𝒅

𝒕𝒅

B

T

Fig. 3. FMCW Chirp Signal.

FMCW Primer. Frequency of an FMCW chirp increases linearly from fmin to fmax in each period, as shown
in Fig. 3. The equation for the transmitted chirp is given as below where B is the bandwidth and T is the sweep
time :

St (t ) = cos (2� fmint +
�Bt2

T
)

When the transmitted chirp signal is re�ected by the object and arrives at the receiver after a delay td , the received
signal, Sr (t ) is attenuated and delayed version of the transmitted signal, so it becomes Sr (t ) = �St (t � td ) where
� is the attenuation factor. The receiver mixes (i.e., multiplies) the received signal (Sr (t )) with the transmitted
signal (St (t )), and gets Sm (t ) = Sr (t ) ⇥ St (t ). If the distance between the object and smartphone is R

2 , td is given
by R/�s , where R is the two-way range estimate and �s is the speed of sound. Plugging td into the above equation
and after simplifying, Sm (t ) becomes:

Sm (t ) = �cos (2� fmin
R

�s
+ 2�Bt

R

�sT
� �B R2

�2
sT

))
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.
Analyzing the frequency spectrum of the mixed signal, we have fp =

1
2�

�Phase
� t = BR

�sT . This means that the
frequency of the mixed signal peaks at BR

�sT . Based on the observed fp in the FFT spectrum, the distance R can

be derived as: R = fp�sT
B . If there are multiple propagation paths between the transmitter and receiver, multiple

peaks are observed in the FFT spectrum of the mixed signal. After converting the x-axis to distance, we generate
FFT spectrum and call it a FMCW pro�le.

3.1.1 Our FMCW. We develop a customized FMCW module as shown in Fig. 4. The speaker transmits an
FMCW chirp periodically and the microphone records the re�ected chirps simultaneously. This module employs
correlation based synchronization technique described in [45] to identify the start of the signal. Then, applying
FFT on the multiplicative mixture of generated and received signal, we get the distance estimates. In the following,
we explain: (i) how to choose FMCW parameters, and (ii) how to select peaks for accurate and fast distance
estimation.

FMCW Chirp Speaker

Microphone
X

Windowing

FFT
Peak 

Detection

Sync

Peak
Selection

FMCW Profile

Recorded

Audio

Fig. 4. Our FMCW Processing Module.

Choosing FMCWParameters. The performance of FMCWdepends on two important parameters: bandwidth
and chirp duration. Bandwidth determines the FMCW resolution, and chirp duration determines the range.

Resolution is de�ned as the minimum distance between two objects that can be di�erentiated. It is important
because the peaks corresponding to the objects of interest may be merged if the objects are close enough. The
merged peak becomes wider and causes erroneous distance estimation. Fig. 5(a) and Fig. 5(b) show how resolution
is dependent upon the transmission bandwidth. Fig. 5(b) shows that a 10 KHz signal can easily di�erentiate
re�ectors that are separated by 10 cm, and Fig 5(a) shows that a 4 KHz signal cause multiple peaks to be merged
into a single wider peak. We �nd that a resolution of 10 cm is good enough for clutter removal in our experiments.
So, we use a FMCW chirp of bandwidth 10 KHz: from 11 to 21 KHz. For comparison, we have also evaluated with
a smaller bandwidth: from 18 to 22 KHz (also in sub-section 5.9).
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Fig. 5. FMCW Profiles.
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A longer chirp allows us to measure a longer distance using FMCW. However, while a user is walking, a longer
chirp duration will introduce more error since the position at which the signal is transmitted and received is
di�erent. Therefore, we should choose an appropriate chirp duration to support large range and responsiveness
to user movement. Through measurement studies, we �nd that 30ms chirp duration works well. This time-period
selection gives us a range of 346m ⇥0.03 = 10.38m two-way and 5.19m one-way. This sampling rate is su�cient
for a walking speed (i.e., within 2 m/s).

FMCW Peak Selection. Multi-path propagation and noise may cause multiple FMCW peaks. It is important
to select the right peak for distance estimation. We approach this issue by (i) improving the peak-to-side-lobe
ratio through windowing, and (ii) identifying the characteristics of correct peaks to be used for distinguishing
from the wrong peaks. Below we elaborate.
(i) Improving peak-to-side-lobe ratio.We multiply the received signal with Hanning window [29] to improve

the peak-to-side-lobe ratio:

H [n] = 0.5⇤
✓
1 � cos

✓ 2⇤�⇤n
N � 1

◆◆

Since the amplitude of the direct path is orders of magnitude higher than the re�ected signals, the side lobes make
it almost impossible to detect peaks from re�ected signals in the FMCW pro�le. As shown in Fig. 6, where only
the side lobes from the direct path are present without windowing. To understand the impact of using Hanning
window, we have performed 56 measurements in 4 di�erent indoor settings (lab, o�ce, meeting room, corridor)
as the distances varies from 0.5 m to 4 m. We have observed that the side lobes completely overwhelm the peaks
from the objects when the distance is within 2.0 m, which results in an error of over than 95 cm. For distances
greater than 2.0m, the side lobe peaks are still comparable to re�ected peaks, so it is still quite likely that a wrong
peak is selected. Therefore, windowing the signal to reduce the side-lobes is crucial for its operation.
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Fig. 6. (a) No Clear Peak in the FMCW Profiles Without Window. (b) Windowing Yields Clear Peak. (c) SNR under Di�erent
Speaker Volume Level. (d) Distance Estimation Error under Di�erent Volume Level.

(ii) Identify correct peak.We �nd the maximum peak observed in the FMCW spectrum corresponds to the object
that is directly in front of the speaker irrespective of the distances to other re�ectors. This can be seen in Fig. 5(c)
and Fig. 5(d), where the maximum peak is always at 1.45m, corresponding to the distance to the re�ector in front.
The magnitude of this peak is considerably high even when the re�ectors at the side or at the back are only 0.6 m
from the phone. This is because the main lobe of the phone speaker, which contains the maximum energy, is
always at the front as observed in [49]. Using this observation, when there is a clear peak, we select the distance
corresponding to the maximum peak and use it for our contour creation algorithm. However, in certain scenarios
(e.g., due to user’s non-deterministic movement, change in phone orientation etc.), there may be multiple peaks
in our FMCW pro�le with the maximum peak not being the one from the object in front of the phone speaker.

To address this issue, we use a peak selection algorithm described in Algorithm 1 to select the peak that most
likely comes from the object in front of the phone. We do this for the set of FMCW pro�les between each turn.
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We group the peaks in each FMCW pro�le based on their proximity to the previous peaks. A peak is assigned to
a group if the distance between this peak and the last peak assigned to the group is within a threshold T (line 7 -
11). If no such group is found a new candidate group is added with this peak (line 12 - 14). At the end, the group
with the maximum number of peaks assigned to it is chosen for estimating distance used in contour construction
(line 15). Algorithm 1 summarizes our peak selection algorithm. The threshold T has been selected as 10 cm.

Algorithm 1 Peak Selection
1: procedure P���S��������
2: # S is set of range values from FMCW
3: Candidates  �����V�����
4: NumCand  0
5: for rt 2 S do
6: Assi�ned  False
7: for i = 1; i  NumCand ; i + + do
8: lastVal  Candidates[i][end]
9: if |rt � lastVal | < thresh then
10: Candidates[i] ������( Candidates[i], rt )
11: Assi�ned  True

12: if !Assi�ned then
13: NumCand  NumCand + 1
14: Candidates[NumCand] ������( Candidates[NumCand], rt )
15: ret maxLen�thVector (Candidates )
16: return ret

3.1.2 Observations on Our FMCW. We make a few important observations from our FMCW experiments. We
will use these observations for contour construction.

Volume. The magnitude of FMCW peaks depends on the speaker volume. Very low volume makes FMCW
peaks hard to detect, while too high volume produces loud audible noise and causes signal distortion, which may
actually reduce SNR (Signal-to-Noise Ratio)1 value. Therefore, we need to select an appropriate volume level to
balance these factors. To �nd an appropriate volume level, we collect 100 distance measurements at di�erent
volume levels using our samsung S7 smartphone (which has 15 levels). The distance is measured from a wall at
distances between 0.5 to 4 m in di�erent indoor locations. Average SNR values for di�erent volume levels are
shown in Fig. 6(c). In our experiments, we have found that the volume level 5 gives us the maximum SNR. We
also show in Fig. 6(d) that the distance estimation performance for the volume levels 5 and above, are similar in
our range of interest (up to 4 m). However, for a volume level below this, the re�ected peak gets very weak for
the distances over 2 m, resulting in high median error (around 5 cm). Therefore, we use volume level 5, i.e., 30%
of the highest volume level for our evaluation. This volume level gives a barely audible signal for frequencies
above 11 KHz with similar performance as the highest volume level.

FMCW Peak vs. Object Size. Fig 7(a) shows the amplitude of the re�ected signal increases with the size of
the re�ector, and tapers o� after a certain size. This means that the microphone only receives re�ection from a
certain area of the re�ector since re�ections from the other part of the re�ector would not reach the microphone
at the bottom of the phone. This explains why we see sharp peaks even when we have a relatively large re�ector
1We calculate SNR by taking the ratio of peak amplitude of the re�ected peak in FMCW spectrum with the average of the whole FMCW
spectrum.
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(e.g., wall). Otherwise, we could have received re�ections from many more points on the re�ector and get very
wide FMCW peaks, which would be di�cult for accurate distance estimation.
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Fig. 7. FMCW Peak and Profile Characteristics.

Perpendicular Distance. We place the smartphone in front of a wall at a distance of 60 cm, and measure
distance using FMCW while placing the smartphone at di�erent horizontal angles with the normal of the wall.
Zero degree is when the speaker and microphone are facing directly towards the wall. As shown in Fig. 7(b),
regardless of the angle of the smartphone with the wall, we always get the distance that is perpendicular to the
wall. This is because only the signal re�ected from that region comes back to the microphone. This is a critical
observation that we use in constructing a contour.

Speaker

Normal to 
Wall

Walking Direction

Wall

Horizontal Angle

(a) Horizontal Angle.

Normal to 
Wall

Vertical Angle
Speaker

Wall

(b) Vertical Angle.

Fig. 8. Di�erent Types of Angle in Our Experiments.

To verify this observation, we measure distances to a large re�ector when placed at di�erent angles. We have
considered both horizontal and vertical angles with the normal of the wall for our experiments, as depicted in
Fig. 8. We have performed the experiments in 4 di�erent indoor settings (e.g., large meeting room, open o�ce
space, corridor and lab). In each setting, we take 10measurements for each angle as the distance is varied between
0.4 to 4 m.
In Fig. 9(a), we evaluate the distance estimation error in a corridor and lab, where a wall is the only re�ector.

The distance estimation error remains similar until the phone is kept at more than 80 degree horizontal angle.
This happens because the re�ected peak is too weak. Fig. 9(b) further shows the results at an o�ce and meeting
room where there are other objects (e.g., chair, board) and the major re�ector is still a wall. In this case, we start
to see re�ected peaks from other re�ectors when the angle is greater than 30 degrees. However, we are still being
able to identify them as separate peaks; furthermore, the peak selection module ensures that the correct peak is
chosen, resulting in a negligible error. However, for angles greater than 60 degrees, the re�ected peak from the
wall is often missed, because it is much weaker than the re�ection from other objects in front of the speaker,
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which yields larger error. Next, we evaluate using concave or convex walls made of wooden sheets. As shown in
Fig. 9(c), the results are similar to that of straight walls.

Fig. 9(d) shows the distance estimation when the orientation of a smartphone is changed vertically. A negative
angle indicates that the phone is tilted downwards. The result shows that the performance for measuring
perpendicular distance of vertical angle are similar to those of horizontal angles, except when the negative angles
is below �30 degree, the error is signi�cantly high. This is because the phone points towards the intersection
between �oor and wall causes merged peaks, which is also shown in Fig. 7(c).

These results con�rm the observation that irrespective of the holding angle, SAMS measures the perpendicular
distance to the wall for a wide range of vertical and horizontal angles. Furthermore, it demonstrates the robustness
of our system under various phone orientation.
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Fig. 9. Error in Estimating Perpendicular for Di�erent Orientations.

FMCWPro�le of an Intersection. Re�ections from an intersection (e.g., the perpendicular wall intersections)
give us a very distinct pro�le compared to re�ection from a straight wall. As shown in Fig. 7(c), the FFT of
signals re�ected from a corner has a wide peak with multiple small peaks in the neighborhood. This is because
audio signals going through 1st , 2nd , or even higher order re�ection can still reach the microphone. Since the
distance of these paths are similar, the resulting peaks merge and the merged peak makes it di�cult to obtain
accurate distance estimation. Instead of trying to extract accurate distances from these samples, we use this
observation to detect corners and remove these samples from contour detection. Using these observations, we
denote an FMCW reading correspond to a corner if there exist multiple peaks with magnitudes comparable to
the maximum in the neighborhood (within 50 cm) of the maximum peak. Algorithm 2 shows the pseudo code
for corner detection using the FMCW pro�le. To �nd an appropriate value for the threshold of the number of
such peaks in Algorithm 2, we have collected around 200 traces from the corners in multiple indoor locations in
di�erent buildings. We run Algorithm 2 on these traces and traces of re�ections from walls in di�erent indoor
settings for di�erent threshold values. The results are summarized in Table 1, where false positives are straight
walls that are classi�ed as corners and false negatives are corners that are not classi�ed as corners. Using these
results, we set Thresh1 = 4 for corner detection since it minimizes both false positives and negatives.
We also observe that the intersection between a wall and �oor or between a wall and ceiling also introduces

additional peaks. To con�rm this observation, we have done an experiment in an an-echoic chamber as described
later. We observe an additional peak whenever the �oor re�ector is introduced. Fig. 10 shows an additional peak
in FMCW pro�le, which is absent from Fig. 11. Using the distances to the wall and from �oor to hand, the position
of an intersection can be easily estimated using Pythagoras theorem. At the start of our experiment, we measure
the �oor to hand distance by pointing the phone speaker towards the �oor. Now if we see a peak with a distance
close to the intersection between the �oor and wall (which is

p
wall_dist2 + f loor_dist2), we consider the peak

is from the intersection and ignore it. Otherwise, it is considered to be from another wall and peak selection
algorithm decides which of the remaining peaks to chose for contour construction.
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Algorithm 2 Corner Detection, Thresh1 (number of peaks in the neighborhood) and Thresh2 (spread of the
magnitude of the peaks in neighborhood) are set according to the measurement results to 4 and 0.6, respectively.
1: procedure ������D��������
2: w P���� ������ 0.5� ��M��. ���� �� FMCW �������
3: if ����(w)) � Thresh1 then
4: if ��D��(w) < Thresh2 then
5: C����� ���� ��������

Table 1. Impact of
the Threshold Val-
ues on Corner De-
tection.

Thr. FP FN
(# pks.) (%) (%)
2 82 0
3 34 3
4 5 7
5 2 46
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3.2 Dead Reckoning
Next we need to estimate the user’s trajectory using smartphone IMU (Accelerometer, Gyroscope, and Magne-
tometer). Our goal is to extract the following information correctly: step size estimation, step count, and heading
direction. We assume that the phone’s heading direction as the user’s heading direction, so we do not need to
compensate for the phone’s orientation. This assumption can be removed if we integrate recent development in
heading direction estimation [51].
Our dead-reckoning module selects an ensemble of di�erent techniques proposed in literature by keeping

the system robust and no need for training. Note that despite signi�cant existing works, accurately estimating
the orientation during walk remains open [2, 56, 65]. We develop a simple yet e�ective cascade-based compass
(accelerometer and magnetometer) and gyroscope aided technique to determine the orientation during walk.
We employ frequency-based noise �ltering to minimize noise introduced during walk. To enhance the accuracy
of step size estimation, we carefully weigh the vertical component of acceleration change after employing
frequency-based low-pass �lter.
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Fig. 12. Dead-reckoning in Action.
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StepDetection. Since themaximum jump in accelerometer reading occurs when the heel strikes the ground [51,
54, 65], we devise an algorithm to identify peaks for step detection. Then, we get the magnitude of the 3-axis
linear acceleration (after removing gravity component) (i.e.,

A =
q
LinearAcc2X + LinearAcc

2
Y + LinearAcc

2
Z

), as shown in the second part of Fig. 12(a). We feed the signal magnitudes through a smoothing �lter in the
pre-processing step. To extract a better low-band step component, a low-pass �lter is then applied to �lter out
high-frequency accelerations caused by the phone’s random movement [54]. Next, we normalize the �ltered
acceleration values. After the low-pass �lter, a peak recognition algorithm with a sliding window is used to detect
peaks in the �ltered data. Speci�cally, ai is detected as a peak (i.e., a user step) if it is larger than all samples
located in the range of [t (i ) � tw/2,t (i ) + tw/2]. Since the user step frequency is in general lower than 3Hz,
the window size tw in the current implementation is set to 0.3s. Fig. 12(a) shows the acceleration signals after
post-processing. In this �gure, the �rst row is the original acceleration output from the smartphone, and the
second and third rows are smoothed linear acceleration data without gravity component and the corresponding
low-band component, respectively. Detected peaks are highlighted in the third row in red dots.

Step Size Estimation. There have been a series of works [20, 23, 46, 53] that estimate the step size based on
extensive training. To avoid personalized training, we assume that a user moves in a similar speed so that step
size remains relatively constant. We use a calibration-free method for step size estimation based on the following
formula 0.98⇥ pAmax �Amin (as derived in [53]), where Amax and Amin are the maximum and minimum linear
acceleration in a step duration. For every step detected, we calculate the step-size. We have observed the median
error is 6cm across 3 users over 60 trials.

Heading Direction Estimation. To perform dead-reckoning, we need to know the heading direction of the
user. We combine gyroscope and magnetometer to get a heading direction estimate. For our case, we �rst convert
both sensor values to the global coordinate system by multiplying them with the rotation matrix, and then use
0.97⇥ Orientation from Gyroscope+0.03⇥Orientation fromMagnetometer to extract the heading direction. A sample
code is given in [19]. However, we have observed that the compass shows erratic variation due to ferromagnetic
interference, which results in a variance of more than 120 degree within 3 seconds. In such scenarios, we only
use orientation from gyroscope reading. Fig. 12(b) shows the heading direction estimate for a trajectory where
the user moves in a rectangle making three turns and moving in a straight line in between. It shows that even
though we can clearly identify turns as large jumps in orientation there is an error of up to 20 degrees when
moving in a straight line. Median error for 100 instances of heading direction estimate is 10 degree and 90th
percentile error is 25 degree. This happens due to small variation in walking pattern changes or subtle hand
sways and environmental magnetic interference. To eliminate this inherent error, we consider this small variation
in heading direction estimates as noise. Therefore, SAMS only tries to identify large changes in the heading
direction, which we identify as the turns (shown as red dots in Fig. 12(c)). We assume a user makes only 90 degree
turns and straight movement between the two turns to avoid heading direction error. The same assumptions are
used in BatMapper system [64]. This is not a signi�cant limitation since most buildings, rooms, corridors are
rectangular. To evaluate the accuracy of our heading direction estimation, we have collected IMU traces for over
100 walks of 3 users with multiple turns having straight segments in between. The traces were collected in many
indoor environments (e.g.a large room, a lab, an open o�ce space, a corridor and a classroom). These areas tend
to have high ferromagnetic interference due to the presence of HVAC system installed. We are able to detect all
turns with a 100% accuracy.
Summing up, we detect steps by selecting peaks in processed accelerometer data and identify turns to get

heading direction. Then, we use this orientation estimation and step counts to construct the path necessary for
our contour construction.
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3.3 Contour Construction

Algorithm 3 Wall Association, where Thresh = 0.1,wnd = 5,N = 3 work well in all the scenarios we have
tested.
1: procedure ����A����������
2: # S is set of phone coordinates from dead reckoning and range values from FMCW
3: wallID  0
4: counter  0
5: w �����V�����
6: for (xt ,�t ,rt ) 2 S do
7: �pre�  �����V�����
8: �af tr  �����V�����
9: for i = 1; i  wnd ; i + + do
10: �pre�  Gradient ((xt ,�t ,rt ), (xt�i ,�t�i ,rt�i ))
11: �af tr  Gradient ((xt ,�t ,rt ), (xt+i ,�t+i ,rt+i ))

12: if ��D��(�pre� ) � ��D��(�af tr ) > Thresh) then
13: counter  counter + 1
14: if counter > N then
15: wallID  wallID + 1
16: for j = 0; j < Thresh; j + + do
17: w ((xt�j ,�t�j ,rt�j ),WallID)
18: counter  0
19: else
20: counter  0
21: return w

After getting the user trajectory and the corresponding distances to the nearby objects during the walk, next
we construct a contour of an indoor space. This involves (i) associate distance measurements to each object (e.g.,
wall), (ii) estimate the distance to the object, (iii) construct a contour based on the distance estimation. Below we
describe these steps in details.

Wall

Walking 
Path

rt

r+1

θ

Fig. 13. Geometric configuration.

Wall Association. We associate each measurement (xt ,�t ,rt ) from dead-reckoning and FMCW modules to a
wall in the room. The algorithm for wall assignment is summarized in Algorithm 3. For the straight walls in the
room, the gradient associated with all points on a wall should be similar. At the intersection, as we transit between
walls, the gradient changes. We assign all points with similar gradients to the same wall. From Fig. 13, if we have
two sets of readings (xt ,�t ,rt ) and (xt+1,�t+1,rt+1), we can get gradient of the path asm1 =

�t+1��t
xt+1�xt . Then the

gradient of wallm2 can be calculated asm2 = tan(� + tan�1 (m1)), orm2 = tan(�� + tan�1 (m1)) depending on
which side of the path wall is present. This can be determined using the phone orientation from the software
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based compass as described in section 3.2, as the user would be pointing the phone towards the wall while moving.
Using similar triangle property and trigonometry, � is calculated as

� = sin�1 (
rt+1 � rtp

(�t+1 � �t )2 + (xt+1 � xt )2
)

For each point, we get a set of gradients �pre� fromwnd number of points that were observed before and another
set of gradients �af tr fromwnd number of points that were observed after that point (line 9 - 11). If all the points
are on the same wall, they have similar gradients. However if some of the points are on a di�erent wall, the
estimated gradients will be di�erent. This means that if the di�erence between �pre� and �af tr is signi�cant, it
is the start of a new wall. If we �nd N such points together, we assign all of them to a new wall (line 12 - 18),
otherwise they are marked as potential outliers to be removed later during clutter �ltering (line 20).

However, the above assumptions may fail when the wall has a curved surface. In this case, the gradient changes
slowly instead of abrupt gradient change at corner between two straight lines. We experimentally determine this
threshold using traces from di�erent curved wall.

Wall Co-ordinate Estimation. After wall association, next step in room reconstruction is to estimate the
actual coordinates (x 0t ,� 0t ) on the wall. Since we always measure the perpendicular distances from the wall as
mentioned in 3.1.2, we have the following two geometric constraints on the values of (x 0t ,� 0t ).

(� 0t � �t )2 + (x 0t � xt )2 = r 2t
.

� 0t � �t
x 0t � xt

=
�1
m2

wherem2 is the gradient of wall (or tangent to the wall if it is a curved surface) and is calculated as the average
of the gradients of the L consecutive points assigned to the same wall excluding the outliers. A large value of L
would average out the error in them2 for straight walls but would increase the error for curved surfaces as the
line through those points would not correspond to the tangent. We pick L = 3 as it gives us reasonable accuracy
for both straight and curved surfaces. Using these constraints, x 0t and � 0t can be calculated as

x 0t = ±
s

r 2t
m2

2
m2

2 + 1
+ xt ;

� 0t = (xt � x 0t )/m2 + �t

This would potentially give us two set of values for each x 0t and � 0t . Among these two sets, we pick the set of
values for which the gradient estimates are closer tom2 In practice, we pick the set that gives us the average
gradient closest tom2.

Outlier Removal. After associating points with each of the walls and generating point coordinates on the
wall, we identify the outliers by performing linear regression on the constructed points (having the same wall id)
and applying Cook’s method [8, 28] on those points. Cook’s distance of each point is commonly used to estimate
the in�uence of a data point when performing a least-square based linear regression. We identify the point as an
outlier and remove them from the group if its Cook’s distance (Di ) is greater than certain value. More speci�cally,
if Di > 4/n [28], where n is the number points in that linear regression window, we perform that outlier removal
operation. We have observed that these outliers are usually due to hand sway movement and clutter. We select the
size of n as 5 such that linear regression can be performed on small segments (within a reasonable walking speed)
during outlier detection. A smaller n degrades the accuracy of curved surface construction since we remove points
which should have been on the surface. A larger n degrades the accuracy of clutter removal since we will consider
a clutter as part of the surface. Our choice of n strikes a good balance in �nding accurate surface contour in
presence of clutter and removing wrong distance estimates. Note that, as any curved surface can be approximated
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using multiple small line segments, outlier detection operation is performed without any degradation of curved
surface estimation.

Contour Construction. The �nal step is to reconstruct actual contour from generated coordinates. Linear
regression based contour construction is preferred if the wall is straight; otherwise spline interpolation should be
used. To determine whether it is a curved or a straight wall, we compare the root-mean-squared-error (RMSE)
between the linear regression (RMSEl in) and spline interpolation (RMSEspline ), where RMSE is de�ned as the
sum of distance di�erences from each measured point associated with the wall to its closest point on the �tted
line. We consider the wall as curved if RMSEl in � RMSEspline � T , and otherwise consider it as a straight wall.

The value of thresholdT is critical in this classi�cation. To �nd an appropriate threshold, we construct di�erent
curvatures using a wooden sheets between two straight walls and run our classifying technique on measured
traces. We observed that for T  8 cm we can always detect a curved wall with a 100% accuracy. Since using
a linear �t for a curved wall results in larger error from ground truth than choosing a spline interpolation for
straight wall, we use T = 8 cm for our experiments. In all our experiments, we observe that spline interpolation
is used for all curved surfaces and only less than 2% straight walls. The points of intersection between di�erent
consecutive walls give the estimated coordinates for the corners. Once we have equations of the walls and
coordinates of the corners, we can plot the room contour.

In summary, to build a contour using SAMS, a user moves along the walls at a normal walking speed keeping
the speaker of the smartphone facing the wall. As illustrated in Fig. 9, the system is shown to be resilient to the
speaker orientation.

3.4 Final Algorithm
Based on the above observations, we present the pseudo-code of SAMS algorithm in 4. After getting the distance
estimation of dead-reckoning module at every Tw interval (which is 0.2 s for our experiments), we combine them
with the FMCW based distance measurement while using steps as synchronization points. Next, we apply the
Wall Association, Co-ordinate estimation, and Outlier Removal algorithm to create contour.

4 SETUP
In this section, we describe our experimental setup in detail. For our experiments, we use Samsung Galaxy
S7, which has a speaker at the bottom and two microphones (mic) with one at the top and one at the bottom
(Fig. 14(b)). In most of the experiments, we use the audio recorded by the bottom mic since the top mic is mostly
used for noise cancellation [6]. Furthermore, the quality of the audio recorded is dependent upon the speaker
position (e.g., if the speaker is at the bottom, the recorded audio quality at the top mic is low). We also perform
experiments with Samsung Galaxy S4 (Fig. 14(b)) to reduce user e�ort by simultaneously using both mics.

Custom	wooden	walls

(a) Contour Experimental Setup
With Wooden Walls.

Front	Speaker

Bottom	Speaker

Rear	Speaker

Top	Mic

Bottom	Mic

Galaxy	S4 Galaxy	S7

(b) Layouts of Smartphones
Used.

Smartphone

Stand

Reflector

(c) Experiment for Understand-
ing FMCW Based Distance Mea-
surement.

Reflectors
Smartphone

Stand

(d) Experiment for Understand-
ing the Impact of Junction.

Fig. 14. Experimental Setup, Phone Layouts, and An-echoic Chamber Setups.
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Algorithm 4 SAMS
1: procedure ���FMCWD�������
2: t0  �������S�����T���
3: t  t0
4: w �����V�����
5: while t  t0 +Tw do
6: t  �������S�����T���
7: w ������(w, FMCWD�������)
8: return w
9: procedure ���D���R��������D�������
10: t0  �������S�����T���
11: t  t0
12: u �����V�����
13: while t  t0 +Tw do
14: t  �������S�����T���
15: u ������(u, ����D�������)
16: return u
17: procedure ���O����������
18: t0  �������S�����T���
19: t  t0
20: v �����V�����
21: while t  t0 +Tw do
22: t  �������S�����T���
23: v ������(v, C������G���O����������)
24: return v
25: procedure ������C������
26: s �����V�����
27: fd ���F����D�������
28: while True do
29: w ���FMCWD�������
30: x ���D���R��������D�������
31: �  ���O����������
32: if ������N��C����� then
33: ������J�������(fd);
34: ����A����������;
35: l �����������E���������
36: ������O�������(l);
37: s ������(s, l)

To perform the experiments, the user generally moves around the indoor space holding the phone in a straight
line while the phone microphones face the walls. We develop an android application that runs on the smartphone
to play audio chirp, record re�ected audio signal and di�erent IMU sensor data simultaneously. The recorded
audio signal and sensor readings are processed in MATLAB to get the �nal contour. We �rst try to understand
the performance of SAMS for arbitrary contours using controlled experiments, with increasingly challenging
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con�gurations. We use 4 ft by 6 ft wooden structures shown in Fig. 14(a) to create di�erent corners, straight
or curved surfaces, and closed shapes like a rectangle etc. Once we have an understanding of how the system
works for arbitrary contours, we then test the system by mapping the real rooms, corridors, and a complete �oor
layout of a real building. We use laser based system [12] to get the ground truth. The system transmits distance
measurements to the smartphone via bluetooth and is accurate to 1.5 mm.

Furthermore, to better understand the audio re�ection patterns, we also have done experiments in an-echoic
chamber as shown in Fig. 14(c) and Fig. 14(d) . Fig. 14(d) shows the smartphone and di�erent re�ectors in the
an-echoic chamber.

5 EVALUATION
In this section, we evaluate our system SAMS in detail, including the accuracy of FMCW, dead-reckoning, contour
construction, and the impact of di�erent factors on the performance of SAMS. Next, we compare with the
BatMapper system [64].

5.1 FMCW Based Distance Measurement
Our chirp duration is 30 ms. It measures distances up to 5 m one-way. To quantify the FMCW based distance
measurement accuracy, we put the smartphone on the �oor with its speaker facing towards the wall at di�erent
distances and take 30 samples for each location. Fig. 15(a) shows the distance measurement is accurate across
di�erent distances. The distance error is stable as the distance increases. Even at 5 meter away, the FMCW based
distance measurement error is within 2.5 cm. We have also repeated this experiment in the an-echoic chamber,
and got similar results. Next, we plot the overall CDF of distance measurement errors across di�erent distance in
Fig. 15(b). As we can see, the median error is around 1.5 cm, which is good enough for contour mapping.
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Fig. 15. Evaluation of FMCW Based Distance Measurement and Dead-reckoning Modules.

5.2 Dead-reckoning Based Estimation
As discussed earlier, in SAMS system, we have used a calibration-free step size estimation algorithm. We have
evaluated this step size estimation algorithm across 3 users. We ask the users to walk 10 m distance for 20 times
and record their numbers of steps to get the median step-size distance. Then, we take the di�erence from the
median size with our calculated size. As shown in Fig. 15(c), the median error is less than 6 cm, which is reasonably
good considering no personalized training is required. For these distances traveled, we have also analyzed the
distance estimation, (which is a function of step size and step count). Fig. 15(d) shows CDF of distance calculation
error: it is mostly within 1m across di�erent movement speeds.

We �rst estimate the accuracy of our system in a setup created by wooden walls and then move on to map real
rooms and corridors. Below we evaluate each of the sub-modules of contour construction.
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Table 2. Wall Association Accuracy and Outlier ratio.

Experiment Association Outlier
Accuracy (%) Ratio (%)

Single Wall 100 0
Two Wall 90.4 6.4
Full Contour 88.1 9.6

5.3 Wall Association Accuracy
Table 2 summarizes the wall association accuracy and outlier ratio for di�erent types of contours that we have
evaluated. For full room contour, the accuracy is around 88%. The association error occurs mostly at the obtuse
angled corners because the change in gradient is not very large. However, we have observed that wrong wall
association at corner does not signi�cantly a�ect our contour estimation since assigning corner points to either
wall does not signi�cantly change the gradient estimate or spline smoothing of either wall. For contours with
four walls, the di�erence in median error from the ground truth is less than 1 cm between the ideal wall mapping
and our wall assignment. The outliers also occur mostly at the corners, since multiple peaks at the corners merge
to give a wider peak, moving the maximum point from its original place and hence giving us erroneous distance
values, which results in outliers. Table 2 shows that increasing the number of corners increases the outlier ratio.

Next, we evaluate our combined SAMS system for recreating an indoor space. As mentioned earlier, initially,
we have used wooden walls to create di�erent shapes and used laser based system to get the ground-truth. To
observe the capability of the system, we have evaluated the system incrementally: starting from a single wall,
then to a wall intersection, and �nally to a full contour construction, which uses both user path and the distance
measurement to the nearby objects. We construct a room contour in the presence of clutters (e.g., a small chair
or desk). Finally, we evaluate SAMS in real rooms and corridors. Finally, we evaluate SAMS in real rooms and
corridors. To quantify the contour construction error, for each point on the estimated contour, we compute the
di�erence between the point and the closest point on the ground truth contour.
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Fig. 16. (a) Straight Single Wall. (b) Angled Single Wall. (c) Curved Wall. (d) CDF of Single Wall Estimation Error.

5.4 Single Wall Contour
Straight Wall Contour. We create a single straight wall or angled wall through wooden structures. In these
experiments, the user moves in a straight path holding the phone in hand with the phone speaker facing the wall.
Fig. 16 shows the user path, ground-truth, and constructed path. All the experiments are performed 10 times,
and the constructed contour with the median error has been plotted, unless speci�ed otherwise. As we can see,
the constructed shape is close to the ground-truth. As Fig. 16(d) shows, the median distance estimation error is
within 4cm, and the measured angle between the user path and wall is within 1.5 degree.

Curved Wall Contour. We also test with wooden walls having curved surfaces. We observe that the system
is able to correctly identify the presence of a curved surface in the contour and use spline interpolation [25]
for contour construction. The CDF of error for curved wall contours is shown in Fig. 16(d). We observe the
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reconstructed contour is within 5cm from the ground truth. Fig. 16(c) shows an example of reconstructed curved
wall contour.

5.5 Multi Wall Contour
To test SAMS for arbitrary shaped contour, we use wooden walls to construct di�erent multi-wall shapes. First,
we start with two-wall intersection having di�erent angles. Fig. 17 (a) and (b) show that we can create the shape
of the two wall intersection very accurately, irrespective of the intersection angles or user path patterns. Note
that we have done linear regression on the constructed points after removing the outliers (due to junctions and
sway movement) and corner points to generate the constructed path. Fig. 18(a) shows that for a two wall contour
estimation the median error is less than 10 cm. We note that rooms with an arbitrary number of walls can be
constructed using di�erent combinations of two-wall contours.
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Fig. 17. (a) 120 Degree Corner. (b) 230 Degree Corner. (c) Rectangular Room. (d) Trapezoid Room.

Finally, we move on to create closed multi-wall room shaped contour. Fig. 17 (d) and (e) illustrate that our
system can create full room contours accurately in a single step. We use four-wall enclosures as examples to
show the applicability of our system.
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Fig. 18. (a) CDF of Distance Estimation Error. (b) Clu�er Removal in Action.

5.6 Contour with Clu�er
We de�ne static clutters as the smaller things that block the direct path of audio from smartphone to the wall. By
smaller things, we mean the width of the object is within 60cm and the height would be such that it will block
the direct path. To evaluate the impact of static clutter in room contour formation, we put a plastic chair (of the
desired dimension) and small wooden cabinet in front of a straight wall and the user walked across the wall in
a straight path. As shown in Fig. 18(b), the chair in front of the wall generates a set of points not in-line with
the majority of the points of the straight wall. So, the outlier removal will automatically remove the clutter. For
bigger clutters like couches, our algorithm will identify it as a separate object. This is reasonable since a large
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object can be considered as part of the room contour. We leave to the future work to further distinguish di�erent
types of clutters.

5.7 Creating Maps of Rooms and Corridors
We use SAMS to map real room and corridor contours in the presence of furniture in our building. The ability to
map arbitrary shaped rooms has already been evaluated in section 5.5. Fig. 19(a) and Fig. 19(b) further illustrate
that SAMS can map real rooms and corridor in a single step with a median error of 12 cm.
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Fig. 19. Mapping the Layouts of Real Rooms and Corridors.

Next, we also explore the possibility of using two mics to further reduce the user pro�ling e�ort. Our experi-
ments show that it is di�cult to get reliable FMCW based distance information from the top mic if the speaker is
at the bottom (e.g., in Samsung Galaxy S7). Therefore, we use Samsung Galaxy S4, whose speaker is at the rear
side and microphones are at the two ends, so that the received signals at both microphones are strong. User holds
the phone in such a way that the mics face the opposite walls. These two simultaneous distances captured via
both mics are used to map the walls of the corridor as shown in Fig. 19(c) and the median error is around 8cm.

5.8 Comparison with BatMapper System
In this section, we compare the results with echo-driven BatMapper [64] with ours in the following settings:
distance estimates from a static re�ector, reconstruction of curved surfaces, reconstruction of a room, and mapping
of an indoor �oor in a building. BatMapper employs acoustic echo correlation based distance estimation technique
that was previously proposed in [29]. However, its accuracy is low due to its less accurate distance estimation
than our customized FMCW and the lack of general contour construction algorithm. Furthermore, it requires
initial training for estimating parameters for the underlying algorithm, multiple walks to get better results, and
has limited range (up to 3.5m one way).

First, we compare the distance estimation for static re�ectors (from 1m to 5m with an incremental increase of
0.5 m) between our FMCW and their echo and �nd SAMS yields 0.5 cm to 2.5 cm median distance error, whereas
BatMapper yields 1 cm to 15 cm median error. Next we consider contour construction and �nd our scheme can
construct curved surfaces much better (4 cm median contour error and 8 cm 90th percentile error in our algorithm
versus 6 cm median error and 18 cm 90-percentile error in BatMapper) as shown in Fig. 20(b). Since we consider
geometric constraints carefully, our curved surface formation is clearly better as shown in Fig. 20(a). The worst
case error of BatMapper system can go up to 22 cm, as shown in Fig. 20(b).
We further evaluate room construction (Fig. 20(c)) and observe that the median error of BatMapper is 8 cm

more than SAMS. In the extreme cases, which often occur in curved or irregular shapes, the di�erence in the
estimation error can go up to 12 cm (Fig. 20(d)).

Next, we evaluate �oor plan construction. In this experiment, the user maps each segment separately. To enable
SAMS to stitch these di�erent contours together to produce a complete �oor-map, SAMS requires explicit user
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input. While walking a segment or a closed loop, the user presses a button in the app to record the start and end
points, which instructs the phone to record the IMU sensors and time-stamps at those points. When the user
starts a new walking loop, it picks one of the recorded points on a previous walking loop as the starting point,
and another one as the ending point for that loop. The app will automatically stitch multiple section contours
together to produce a complete �oor-map. Fig. 21(c) illustrates that the indoor map contour estimation error
can go up to 2.6 m for BatMapper, whereas the error of our system is 1.2 m. Note that stitch is not required in
general, and a user can also construct a �oor plan by walking along the �oor in one shot. Stitching is just an
option when the �oor is too large to walk in one run.
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Fig. 21. Mapping of a Real Floor Space using SAMS and BatMapper.

5.8.1 Component Level Comparison. We further quantify the bene�t of each component in our design.
Distance Measurement. SAMS uses FMCW to estimate the distance whereas BatMapper uses pulse based

ranging. We compare these two schemes by varying the distances to a re�ector from 0.4 m to 3 m. We have
conducted these experiments in di�erent indoor settings to compare performance in several multi-path scenarios.
As seen in Fig. 22(c), the accuracy for distance estimation is similar for both schemes except for the tail above
90th percentile where SAMS is better than BatMapper. The tail in the CDF for BatMapper is caused by the error
in measurements for distances less than 50 cm. This is because for these distances the re�ected pulse overlaps
with the transmitted BatMapper’s signal, making the re�ected peak very di�cult to detect.

Dead Reckoning. SAMS’s dead reckoning component builds on the same prior work, with some minor
modi�cations, used by BatMapper so the dead reckoning error is the same in both cases.
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Contour Construction. In BatMapper system the estimates for wall distance based on its probabilistic peak
selection are combined with user position estimates from dead reckoning to construct contours. BatMapper
does not consider geometric constraints that are present due to the corridor and the room shapes; SAMS adds
these geometric constraints on top of the constructed points to get a better estimate of contour and increase
the accuracy of constructed contour. In Fig. 22, we compare accuracy by feeding the same distance and dead
reckoning path estimates to both scheme’s contour construction module. Fig. 22(a) illustrates the scenario when
there is a curved surface present and in Fig. 22(b) we only have straight walls. It can be seen from the �gures that
the majority of the performance bene�t of SAMS over BatMapper comes from this module.
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Fig. 22. Comparing SAMS and BatMapper.

5.9 Impact of Di�erent Factors on SAMS
In this sub-section, we evaluate the robustness of our system against a few important factors.

Robustness to Ambient Sound.We note that all the results shown are done in the presence of common noise
in normal o�ce environment, including noise from HVAC system and people. Next we have further stress-tested
our system by continuously talking and/or playing music at normal and loud volumes. We have played several
di�erent genres of music (e.g., Jazz, Pop etc.) together to emulate di�erent ambient sound. The noise source is
(played through a logitech speaker) placed 10 cm away from the smartphone that is running SAMS. Fig. 23(a)
compares the distance estimation error in normal o�ce environment for di�erent noise sources. We observe that
human voice and medium volume music have negligible e�ect; playing music at the highest volume changes the
median error by less than 0.5 cm. This indicates that our scheme is robust to ambient sound.
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Fig. 23. Impact of Di�erent Factors on SAMS.

E�ect of Doppler Shift. In SAMS’s use-case scenarios, we always measure the perpendicular distance from
the wall. This means that the relative radial velocity between in direction of the re�ected signal is zero as the
walking direction is perpendicular to the re�ected path. Therefore, the re�ected peak in FMCW spectrum is
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una�ected from Doppler e�ect. To verify this observation, we have measured the frequency shift in the re�ected
signal of a pure tone. We have gathered 30 traces of user moving along the wall in di�erent indoor settings:
corridor, lab, o�ce, while keeping the phone’s speaker facing towards the wall. Therefore, even though we are
moving with a higher speed, the relative radial velocity between the smartphone and the wall is zero as the
walking direction is perpendicular to the direction of re�ected wave, thus the Doppler shift for the re�ected
wave should be close to zero. We observed that for a normal walking speed (e.g., 1m/s), the maximum Doppler
shift is within 1 Hz 2. This small shift seen in our experiment is due to the user’s hand movement, which has
non-zero radial velocity ( 3 cm/s). However, this translates into a distance estimation error of less than a millimeter.
Therefore, for all practical purposes, the e�ect of Doppler shift on SAMS is negligible.

Impact of Bandwidth. SAMS uses a sweep frequency band of 11 KHz to 21 KHz. As shown in Fig. 5(b),
this bandwidth is required to distinguish multiple nearby re�ectors. However, this audio signal is audible. We
use 30% volume level in our experiment. This level is barely audible to human ear. Moreover, indoor �oor-map
construction is usually one-time and small audible sound is acceptable.

To further test the impact of sweep frequency bandwidth, we further evaluated distance estimation accuracy
for the signal between 18 to 22 KHz. We compared the error in distance estimation for both bandwidths while
measuring distance to the walls in a corridor. Results in Fig. 23(b) show that the di�erence in accuracy is less
than 0.2 cm for the 80% of the values. However, we do see some large errors for around 20% of the measurements.
This is because for most of the measurements the only re�ector is the wall so we get only a single peak in the
FMCW pro�le. However, in the presence of some furniture close to the wall, we get multiple re�ection. Smaller
bandwidth leads to merged peaks, which may shift the peak and results in a larger error. These results indicate
reducing the bandwidth to 18 to 22 KHz results in similar accuracy in most cases except in presence of clutter, in
which case higher errors may arise.

6 USE CASE
As a use case scenario, we show that the constructed indoor contour can be used to predict the wireless signal
strength. We develop a simple ray-tracer to estimate Wi-Fi received signal strength (RSS) at di�erent locations
using the indoor contour constructed from SAMS. The RSS is estimated as

RSS = Pt +Gt +Gr � (� ⇤ 10 log(d ) + Rl )
where Pt is the transmitted power, Gt and Gr are the TX and RX gain, respectively,
alpha is the attenuation factor and Rl is the re�ection loss from the wall. In our experiments, we use a laptop
with Intel 5300 chip acting as a transmitter and another laptop acting as a receiver logs the RSS for every packet
using Intel CSI toolkit [37]. The transmission power (Pt ) and antenna gains (Gt and Gr ) remain the same during
all our experiments and can be estimated jointly. To estimate these parameters, we measure RSS at di�erent
distances from TX in an open space so that there is only a direct path. Using these measurements, we estimate
Pt +Gt +Gr and � . We then perform another experiment with TX and RX placed in front of a single wall. Using
previous estimates and RSS readings at di�erent distances from the single wall, we estimate Rl . The wall material
is same for all the experiments done later, so these estimated parameters remain same for all the experiments.
Now we use simple ray-tracing to estimate the received signal of the direct path and all �rst order re�ected paths
from the transmitter to the receiver given a room layout. Using the TX power, attenuation factor, and re�ection
loss estimates, the ray tracer synthesizes signals from all paths and outputs the RSS at the RX location. The room
layout generated using SAMS is given to the ray-tracing engine. It is used to predict RSS by calculating possible
paths at di�erent distances in di�erent settings. We compare the estimated RSS with the measured RSS by placing
TX and RX in a corridor of length 10 m, in a closed rectangular room of dimensions 6 m x 4 m and in front of a

2Using Doppler equation � = � f ⇤ c/f0, This corresponds to velocity of 3 cm/s, for center frequency of 11 KHz
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Fig. 24. (a) Improvement Over Baseline Model. (b) Di�erence Between Predicted and Measured RSS.

corner in a large hall. In all three settings, we �x the position of transmitter and measure the RSS at receiver at 10
di�erent points with varying separation between TX and RX and the compare them with SAMS ray-tracer. Fig. 24
shows that SAMS ray-tracer is able to improve the RSS prediction by up to 3 dB over the baseline, which only
considers the direct path. Moreover, the predicted RSS is within 1.5 to 2 dB of the measured values. These results
suggest we can use the contour to predict the RSS at any given location (even without any direct measurements
at that location). Such information can be used for a number of important wireless optimization tasks, such as
AP placement, AP selection, and rate adaptation.

7 RELATED WORK
Recently, there is an increased interest in the research community in acoustic based applications. In the following,
we present those works which are related in terms of techniques or applications.

Acoustic Tracking: For device-based acoustic tracking, AAMouse [62] uses doppler shift based acoustic
tracking, whereas CAT [45] leverages external speakers and uses FMCW for phone movement tracking at mm-
level accuracy. Device-free techniques like LLAP [61] utilizes phase-shift, and FingerIO [48] leverages echo-pro�le
correlation, to achieve 1 cm accuracy. In our application setting, phase-based and echo-pro�le do not perform
well. Our SAMS is built on top of FMCW-based distance. Di�erent from existing work, our goal is to go beyond
distance measurement to construct an indoor map.

Acoustic Ranging: Graham et al. [29] use smartphones to show echo peaks to create a software-based sonar
sensor for distance measurements. [36] further builds a sonar attachment for smartphone to measure distance
and [60] uses correlation based FMCW to detect breathing movement within a small range. DopEnc [63] uses an
acoustic-based approach for identifying persons that the user encounters during interaction. Recently, researchers
have combined depth sensor, camera, and audio to create a LiDAR like attachment for smartphones [33]. Di�erent
from these works, our system does not require extra hardware while achieving high accuracy.

Comparison with Depth Cameras: There are four main approaches to gather depth information from
a single scene or image: i) stereo vision based approach, ii) structured light based methodology, iii) time-of-
�ight based approach, and iv) data-driven learning based approach. For example, Bumblebee camera [7] uses
stereo vision based approaches, which requires proper calibration with a host pc and parameter tuning for new
environments to get accurate measurements. In the case of smartphone based acoustic sensing, the ubiquity of
speaker and microphone help in adoption. In comparison, Kinect uses structured light based technology, which
works up to 3 m range accurately but does not provide good results after that. The range of our system can
go up to 5 m. The PMD CamCube [16], like LiDAR, a time-of-�ight (ToF) camera, acquires depth information
directly on the camera hardware without any calibration to provide good depth estimates. This camera has
several limitations: high cost, noisy depth estimation, sensitive to ambient light or transparent glass like material,
which limits its use to indoor scenarios with controlled lighting. Acoustic based approach can work in a variety
of settings, both for transparent material and in dark situation. Furthermore, issues related to image capture
like orientation or occlusion will not a�ect our system. Recently, deep-learning based methods are used to
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estimate the depth information of di�erent objects in a particular image [35]. This can be achieved by training
from a manually labeled data of background/fore-ground images and objects combined. Recently, Google Pixel
smart-phone enables portrait mode in a single camera based setting [17], by partially utilizing this method.
However, it is tailored to a speci�c set of problems and requires re-training for each of the cases in di�erent
scenarios.

Indoor Mapping: Indoor mapping and �oor plan construction have become an urgent problem for location
based applications. Robotic approaches can produce accurate maps, but they usually require expensive special
hardware (e.g., laser rangers [57], depth cameras [40], sonars [58]). Vision based techniques [18, 55] can generate
3D models of building interiors, but they incur high computing overhead, and also face privacy and technical
limitations (e.g., glass walls, blurry images). Recently, CrowdInside [22] uses inertial data with anchor points to
approximate shapes of accessible areas through crowd-sourcing. Jiang et al. [39] leverage Wi-Fi signatures to
detect room and hallway adjacency, and combine with user trajectories to construct hallways. Jigsaw [34] and
other works [27, 31] leverage images to generate geometry attributes and spatial constraints of indoor landmarks.
Such work usually requires signi�cant amount of data and crowd-sourcing e�orts due to limited resources and
energy on the smartphone. Moreover, those using images/videos also face privacy restrictions.
Due to the high computation overhead, high energy cost, and privacy concern of vision-based approaches,

researchers have attempted to build acoustic mapping solutions. Recently, researchers were able to create a
convex polygon-shaped room with the help of multiple mics positioned at known locations [30, 42, 52]. They
utilize echoes and geometric property of echo-arrival in a convex polygonal room to construct the room-shape,
based on the known locations of mics. BatMapper is the closest to our work. It is an infrastructure-free smartphone
based acoustic mapping system. The main di�erences are the following: (i) it requires extensive training to infer
the parameters of the probabilistic algorithm, (ii) it uses echo based distance estimation, which has higher error,
(iii) it cannot handle surfaces with general shapes, and (iv) it requires multiple trials to construct the map of
a single space. Compared with the existing works, the advantages of our approach is that we can construct a
indoor map for surfaces with arbitrary shapes using a smartphone without reliance on any infrastructure or
calibration by simply letting a user walk around the area once. It removes the need of infrastructure deployment
for higher accuracy and the need of extensive training step.

8 CONCLUSION
In this paper, we present a smartphone-based indoor space mapping system. It �rst measures the distance to
one or more nearby objects. Then, it uses customized IMU-based dead-reckoning and geometric constraints
derived from the measured distances to construct the room contour. Our evaluation results show the promise of
our system. As part of our future work, we plan to explore other speci�c applications of SAMS, such as indoor
localization, navigation, and enriching AR/VR.
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