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The future of Internet-of-Things (IoT) demands seamless interaction

between users and devices. The vision is also of one, where sensing and actua-

tion interfaces blend into everyday objects. If all these interactions and sensing

interfaces are realized without the need of an integrated power source and built

upon hardware so cheap and simple that it can be installed or discarded easily;

then, any physical space can become truly context-aware.

Firstly, to achieve this vision of IoT-enabled smart space, we first de-

sign and develop RIO, a novel battery-free touch-sensing user interface (UI)

primitive. With RIO, any surface can be turned into a touch-aware surface

by directly attaching RFID tags to them. RIO is built using the technique of

impedance tracking: when a human finger touches the surface of an RFID tag,

the impedance of the antenna changes. This change manifests as a variation

in the phase of the RFID backscattered signal and is used by RIO to track

fine-grained touch movement over both o↵-the-shelf and custom-built tags.
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Secondly, we build a system that analyzes ball motion using a single

RFID reader antenna and RFID tags. Despite significant work on wireless

sensing, most existing works focus on sensing translation movement or abso-

lute localization. However, rotational motion is also essential, especially in

sports analytics (e.g., tracking ball movement), yet has been under-explored.

Motivated by the need, we use RFID tags to sense a ball’s speed, direction,

spin, and rotation axis. In particular, we exploit the polarization in RFID to

enable motion sensing. We develop a model to capture the impact of polariza-

tion on the received signal and an optimization framework to incorporate the

model to estimate the ball movement. We implement our system, Tag-based

Inertial Measurement Unit (TIMU ), and demonstrate its e↵ectiveness through

an extensive evaluation. To the best of our knowledge, this is the first RFID

system that can sense general motion using a single RFID antenna.

Finally, we further develop a system called RTSense, which enables

RFID tags to sense room temperature. Our key insight is that the impedance

of the RFID tag changes with the temperature, and such a change can be re-

flected in the tag reading. Thus, we can piggy-back communication channels

with sensing information. However, it is challenging to achieve high accuracy

and robustness against environmental changes. To address these challenges,

we first develop a detailed analytical model that captures the impact of tem-

perature change on the tag impedance. We then build a system that leverages

a pair of tags that respond di↵erently to the temperature change to cancel out

the environmental changes.
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Chapter 1

Introduction

The future of interactive smart-spaces counts on seamless ubiquitous

sensing [72] powered by the Internet of Things (IoT). Because, accurate sens-

ing of the surrounding fuels the context-awareness, which is critical for the

intelligence of these spaces. This vision of the future also demands seamless

integration of intuitive interaction between users and smart devices. This vi-

sion can only be realized if sensing and actuation interfaces are embedded into

common everyday objects, without a huge infrastructure burden. Imagine if

all these input and sensing modalities operate without the need for any built-in

battery or power source, and built upon hardware so cheap and simple that it

can be installed or discarded easily. In this proposal, we build on this vision of

ubiquitous wireless sensing using battery-free cheap stickers by re-purposing

or customizing the Radio-Frequency IDentification (RFID) tags. More specif-

ically, we aim to enable three aspects of ubiquitous wireless sensing: user

interaction sensing, environment sensing, and object movement sensing. Fur-

thermore, we want to make these systems seamless and easy-to-incorporate.

However, passive RFID tags have already been used to develop sens-

ing, activity recognition and localization solutions [78, 209, 108, 107, 184, 198].
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Among these notable works, machine learning techniques using the PHY-layer

features of both o↵-the-shelf [108] and custom-built tags [107] have been suc-

cessful in classifying several well-defined gestures such as hand waving, touch-

ing and swiping. Other approaches such as [159], have also designed custom

backscatter capacitive measurement circuits to detect touch events on the tag

antenna. Apart from these works, there are some recent works [115, 113, 94]

which use higher bandwidth through universal software radio platforms to en-

able cm-level fine-grained tracking or food-quality detection. Furthermore,

there are few recent techniques which leverage RFID-tags to sense a few in-

formation of interest of the immediate surroundings, like temperature, light,

humidity, etc. [178] experiments with connecting commercial sensors onto the

passive antennas of RFID tags to sense di↵erent properties of the surround-

ing, whereas [54] uses customized RFID tag to measure the temperature.

However, all these approaches, trade-o↵ among various practical factors, like,

communication range, cost, and sensing resolution. In the following, we focus

on the main challenges to realize this vision of battery-free wireless sensing

with commercial o↵-the-shelf components.

1.1 Challenges

While intuitive and attractive, making passive RFID based wireless

sensing based systems work well in practice for di↵erent types of applications

involves several challenges. Main challenges are the following:

• Enabling Seamless and Ubiquitous Interactivity: To realize the
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vision of large IoT-enabled smart spaces, we need to break the barrier

between the user and the intended application. If we can enable seamless

interaction between the users and the objects in the environment through

battery-free RFID tags, it would be an important first step toward the

goal. How can we enable touch interaction in everyday objects through

RFID tags in a scalable and robust manner? In a multi-tag setting,

how to avoid or better even, exploit the mutual coupling phenomenon

in RFID tags to measure the single point touch detection and tracking

reliably?

• Enabling Complex Motion Sensing: To track the motion states of

a moving object in a dynamic environment, one needs to infer the trans-

lation and rotation information simultaneously. How can we achieve

this with a minimal hardware setup such as a single RFID reader an-

tenna? Furthermore, can we achieve this accuracy with minimal change

in the environment or the moving object without any customized hard-

ware setup? This seamless track-able complex motion information can

be used to make the spaces more context-aware.

• Going beyond the Mobility Sensing: To sense beyond the mobil-

ity or interactivity also plays a critical role in realizing the vision of

genuinely context-aware smart spaces. For example, can we sense the

environmental temperature with these passive RFID tags in a robust

manner? In the presence of the intrinsic environmental variations, how
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can we design a system or metric to be reliable? How to make a perfect

trade-o↵ among the communication range, cost, latency, and robustness

for these types of passive sensing systems? Can we provide some in-

sights regarding this? These challenges are generally side-stepped in the

previous tag sensing works [64, 65, 68].

1.2 Our Approach

To realize the grand vision of fully context-aware connected smart-

spaces, where ubiquitous wireless sensing is a reality, we propose to build

three end-to-end systems that tackle di↵erent aspects of the goal. The goals

of these three novel passive RFID systems are designed to mainly address the

challenges mentioned above. Firstly, we develop a battery-free touch primitive,

calledRio, which can be embedded in everyday objects and addresses the issue

of ubiquitous interactivity. Secondly, we use these passive RFID tags to track

the motion information (both translation and rotation) of a moving ball using

a single RFID reader antenna, which addresses the problem of complex motion

sensing. Thirdly, we build a wireless battery-free temperature sensor, called

RIO, which can easily be blended into the wall surfaces to measure the indoor

temperature. This helps to address the challenge of environmental sensing.

These three components touch upon three leading players of this vi-

sion of context-aware smart space: user, environment, and object. In Rio,

we enable seamless user interaction with the environment, which opens up the

possibility of making any object interactive. This also unfolds the grand vi-
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sion of ubiquitous interactivity. Moreover, passive RFID system based motion

tracking also provides information about the moving object in the environ-

ment. In RIO, we go beyond traditional translational motion estimation and

incorporate rotational motion-sensing too. Whereas, RTSense provides an

attractive solution to sense and communicate the environmental temperature.

This helps in making a space genuinely context-aware. In the following, we

provide a brief description of each of the three modules of this proposal.

1.2.1 RIO: Battery-Free Touch UI

In the first work, we explore the design of a battery-free fine-grained

touch gesture input interface using Radio Frequency IDentification (RFID)

technology. We have focused on the following things to implement Rio.

Firstly, to validate the reliability of Rio’s primitive, we present a de-

tailed a measurement study of RFID backscatter signals in response to physical

touch across the RFID antenna. We use both over-the-air and Vector Network

Analyzer (VNA) measurements, to show how (a) the impedance of the RFID

antenna will vary in response to the physical touch; (b) the amount of vari-

ation depends on the location of the physical contact with the antenna; and

(c) the variations in antenna impedance form the dominant factor (compared

to other artifacts like multi-path) contributing to a corresponding change in

the magnitude and phase of the backscattered signal. Equipped with this un-

derstanding, Rio uses this touch-dependent phase change behavior of RFID

tags as a primitive to detect touches on an RFID tag, as well as to track the
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location of the finger during a swipe over the tag surface.

Secondly, Previous works have identified that mutual coupling between

tags [174, 56, 133, 188] has a significant impact on the backscattered signal

phase. Hence, when multiple RFID tags are deployed close together on the

same surface, the backscattered phase is a↵ected by both the physical contact

with the RFID antenna, as well as mutual coupling e↵ects, thereby substan-

tially a↵ecting the tracking accuracy. While previous works have made similar

observations [174, 56, 133, 188], the impact of such coupling has been overcome

largely by building tolerance into the solution. In contrast, we take a more

active approach to model and understand the impact of inter-tag coupling on

our primitive. With the help of our measurement campaign and supporting

model, we show that while coupling can a↵ect the phase change behavior on

the desired tag and hence its tracking accuracy, it contributes to a stable, pre-

dictable phase-change pattern in the neighboring tags. Thus, by leveraging

the collective phase-change behavior across multiple tags, Rio translates the

challenge of coupling into an opportunity to enhance the tracking accuracy

even in multi-tag scenarios.

Thirdly, we design algorithms that leverage the touch-based phase-

change primitive in Rio as well as the inter-tag coupling behavior to track

touches to a median error of only 3 and 7 mm in single and multi-tag settings

respectively. Rio’s algorithms provide the flexibility to operate at various

points in the accuracy-latency trade-o↵ curve, allowing for a reasonable loss

in accuracy for a more responsive real-time tracking.
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Finally, the ability to go beyond COTS tags expands the scope of ap-

plications possible with Rio. Custom-designed RFID tags mimicking di↵erent

shapes, characters, etc. allow battery-free interfaces to be customized for spe-

cific smart spaces use cases in Rio. We describe how these tags can be con-

structed, and extend the touch/gesture tracking algorithms in Rio to support

tracking applications with these custom-designed tags.

1.2.2 TIMU: Battery-Free Motion Sensor

We seek to develop a passive RFID-based tracking system that can

achieve (i) high tracking accuracy for both rotation and translation movement,

(ii) low cost, and (iii) battery-free. For this purpose, we attach RFID tags to

a ball and use a commercial-o↵-the-shelf (COTS) reader with a single antenna

to sense motion information. The system is easy to use and user friendly since

RFID tags are cheap, light-weight, and easy to attach to a ball, and a COTS

reader with one antenna is widely available.

To achieve high tracking accuracy, we exploit the polarization between

an RFID tag and a linearly polarized reader antenna to enable sensing using

a single reader antenna. Due to RFID polarization, the magnitude and phase

of the received signal are significantly a↵ected by the relative orientation and

position between the RFID antenna and tag. Therefore, we can use the re-

flected signal arriving at the RFID antenna during rotation as the signature

to estimate the orientation. In order to realize this vision, we decompose the

general tracking problem into three more tractable sub-problems: (i) track-
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ing rotation given a fixed ball position, (ii) tracking translation movement,

and (iii) integrate the rotation tracking and translation tracking for general

movement tracking. For (i), we analytically derive the reflected signal arriving

at the RFID antenna given the relative position and orientation between the

reader and tag by considering the polarization and non-uniform gains of the

RFID reader antenna and tags.

We apply our model to derive the received signals during rotation for a

given rotation axis. We then search the rotation axis whose estimated signals

during a rotation best matches with the measurement. We cast this tracking

problem to a non-linear optimization problem and design a deep neural net-

work (DNN) to e�ciently find the right initial solution. We further leverage

the temporal locality to improve the quality of the solution.

For (ii), we use the phase change to track the relative distance change

and use frequency hopping to get the absolute distance. Tracking the angle

of arrival (AoA) using a single antenna is more challenging. Existing works

require multiple antennas to estimate AoA. We realize one-antenna based AoA

estimation by using the same non-linear optimization framework, which lever-

ages the polarization and non-uniform gains in the RFID reader antenna and

tags.

Finally, we integrate our rotation tracking with translation tracking to

handle general movement involving both rotation and translation. We build

a system, called TIMU (Tag Inertial Measurement Unit), which turns COTS

RFID Tags into battery-free IMUs. It measures motion parameters, including
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rotation axis, rotation speed, 3D position in a battery-free manner, while elim-

inating the need for an additional communication channel to report the tracked

information. By accomplishing this, we enable a single RFID antenna based

solution for complex motion state sensing. Using a set of passive RFID tags,

TIMU deciphers both translation and rotation motion, even at a relatively

higher speed.

1.2.3 RTSense: Battery-Free Temperature Sensor

Inspired by the tag-antenna based sensing and due to the growing popu-

larity of low-cost passive RFID tags, we explore the possibility of using passive

RFID tags as temperature sensors. There have been several existing works that

use RFID tags to sense motion, such as, tracking [184, 165], activity monitor-

ing [78, 168] or touch sensing [145] using RFID tags. However, temperature

sensing is significantly di↵erent since it is beyond measuring the length of the

propagation path but measuring the physical property of the antenna. We

observe, like [65], that temperature change can result in a change in the im-

pedance of the RFID tag, and such a change can be captured using the phase

of the received signal reflected by the RFID tag (like [68] with customized

tags). Based on this relation, one can potentially map the phase change back

to the temperature change.

To achieve reliably more accuracy in temperature sensing, we develop

an analytical model that captures the impact of temperature change on the

phase of the reflected signal. The model helps us gain insight that larger an-
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tenna surface area results in more impedance change, which can be exploited in

di↵erential sensing. This opens up the possibility of achieving better resolution

by exploiting the antenna surface. To make the system more robust against

environmental changes, we use a pair of tags that respond di↵erently to the

temperature and measure the phase di↵erence between the two tags. The use

of two tags allows us to cancel out the impact of environmental changes since

both tags experience the same environmental change. Using these observa-

tions, we build the tag-pair by attaching RFID chip transponders to the dipole

antennas. This area-based tag-pair design helps us to develop an environment

independent way of sensing room temperature, which in turn circumvents the

problem of sensing range reduction.

Before arriving into the final design, we experiment with a variety of

RFID setups for temperature sensing. We converge to a simple commercial

RFID tag coupled with a custom-designed copper dipole antenna-based tem-

perature sensor through experiments. We build a system called RTSense

(RFID-based T emperature Sensing) using this tag-pair, which can be easily

deployed in the walls of current buildings or future smart-spaces. We also

use a specific phase-di↵erence based metric to increase the robustness of the

system.

1.3 Contributions

The major contributions of this proposal are summarized as follows:
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• We develop a prototype of Rio, and demonstrate its touch and gesture

tracking accuracy using both COTS and custom-designed RFID tags.

We demonstrate the robustness of Rio through exhaustive real-world

evaluations and show that accurate tracking is maintained even at dif-

ferent tag angles and distances to the RFID reader. We also develop

two sample applications using custom-designed RFID tags to highlight

the flexibility and practicality of Rio. Our evaluations demonstrate that

Rio (a) detects a human touch event with 100% accuracy and (b) tracks

the location of a human finger during a swipe gesture across the surface

of a COTS RFID tag to within 3mm.

• In TIMU, we develop a passive wireless sensing framework to track

di↵erent motion state information. We develop a novel algorithm that

uses the polarization and non-uniform gain values between the RFID

tags and reader antenna to estimate the rotation axis and speed using

a single RFID reader antenna. To the best of our knowledge, this is

the first system that senses general motion, including both rotation and

translation using a single RFID reader antenna.

• In RTSense, we develop a simple yet accurate model that captures the

relationship between the temperature and phase of the reflected signal

from an RFID tag. RTSense uses a pair of RFID tags as temperature

sensors that are robust against environmental changes. After extensive

evaluation, we demonstrate that cheap passive RFID tags can serve as
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temperature sensors (can provide up to 2.9 degree centigrade of median

error) independent of the distance of deployment and orientation and

have a normal read range.

1.4 Proposal Outline

We present a primer on the passive RFID system in Chapter 2 and

discuss related work in Chapter 3. We explain RIO in Chapter 4. We present

TIMU, our motion-sensing system in detail in Chapter 5. Next, we discuss

the work RTSense, the passive RFID-based temperature sensing work, and

conclude in Chapter 6 and 7, respectively.
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Chapter 2

Background on Passive RFID

Passive RFID system communicates using a backscatter radio link, as

shown in Fig. 2.1. The reader supplies a Continuous Wave (CW) periodic sig-

nal that persists indefinitely. The passive tags purely harvest energy from this

CW signal. The tag then modulates its data on the backscatter signals using

ON-OFF keying through changing the impedance on its antenna (Fig. 2.2).

d

!

"T

"R

"Tag

Reader

Antenna

Tag

Continuous	
Wave

Backscatter
Signal

On-Off	
Modulation

Figure 2.1: Operation of a RFID reader antenna and a tag.

2.1 Protocol

Fig. 2.2 shows a successful read process between the reader and tag.

According to the specification [34], an inventory round begins with a Query
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command from the reader that includes a slot-count value Q and other mod-

ulation parameters, e.g., link frequency. Each tag receiving Query will pick a

random value in the range of [0, 2Q � 1] and load the value as its slot counter

to be used as a timer. When the slot counter reaches 0, the tag replies an

RN16 packet, containing a 16 bit pseudo-random number. The reader sends

an ACK command containing the same RN16, and the tag replies its ID back

to the reader. If there is a collision, the tag resets its slot-counter again.

Query CW ACK CWReader

Tag RN16 Tag	IDPreamble

Figure 2.2: Communication process between reader and one tag.

2.2 Passive RFID tag

A typical passive RFID tag, as shown in Fig. 4.2b, consists of an an-

tenna and an integrated circuit (chip). According to [152], passive RFID tag

absorbs the most energy when the chip impedance and the antenna impedance

are conjugately matched, i.e., Zc = Z⇤
a
[134]. So, all o↵-the-shelf ultra-high

frequency(UHF, 860-960 MHz) passive tags come with proper matching [134].

2.3 COTS RFID reader

COTS RFID reader [25] uses linear or circular polarized antennas for

both transmitting and receiving. They generally provide facilities to access
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Va

Antenna

Chip

Figure 2.3: Passive RFID tag equivalent circuit.

lower-level information [24] like RSS and phase values etc. through SDK [30].

A COTS reader employs an open-loop estimation (e.g., preamble correlation)

or a closed-loop estimation technique for acquiring phase and RSS [35].

2.4 Received Signal Phase

Let r denote the distance between the reader antenna and tag. There-

fore, the signal traverses a total distance of 2r due to back-scattering. The

received phase is not only determined by the distance, but also by the addi-

tional phase o↵sets introduced by the transmitter, tag, and receiver circuits,

denoted as ✓T , ✓TAG and ✓R, respectively. The total phase change [35] observed

by the reader can be expressed as:
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✓ = (
2⇡

�
⇥ 2r + ✓T + ✓TAG + ✓R ) mod 2⇡ (2.4.1)

where � is the wavelength. ✓T +✓R can be expressed as polarization mismatch

2�(r̂) or 2�. ✓TAG can be expressed as arg( 1
ZA+ZC(OFF ) �

1
ZA+ZC(ON)). If we

assume ZC(OFF )!1 (i.e., practically very large) [68, 118], then the above

equation can be expressed as:

✓ = (
2⇡

�
⇥ 2r + 2� + arg(� 1

ZA + ZC(ON)
) ) mod 2⇡ (2.4.2)

If we measure frequently enough without phase wrap-around, ✓ = 2⇡
�
⇥

2r + 2�+C, where C = arg(� 1
ZA+ZC(ON)) is a constant. � is the polarization

mismatch angle between the reader and tag antennas. For a linearly polarized

RFID reader antenna and tag directly facing each other (e.g., azimuth angle =

0), � is equal to the relative orientation (e.g., � = 0 when they are in parallel

and � = ⇡/2 when they are orthogonal). When the azimuth is non-zero, � is

the sum of the relative orientation and azimuth [154, 165].

2.5 Tag Chip Threshold Power

The amount of this harvested power that is transferred to the RFID

chip (IC) is Pchip [62, 93, 64] can be given by:

Pchip = (1� |�tag|2)GtagGtPt⇢
2(

�

4⇡r
)2 (2.5.1)

Here, the tag to reader distance is r, the reader antenna’s transmission signal

power is Pt, Gt is the directional gain of the reader antenna, Gtag is the gain
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of the tag antenna, � is the wavelength of the signal, ⇢ is the polarization

loss factor (which is the function of mis-match between the reader and the tag

antennas), and �tag =
ZC�Z⇤

A
ZC+ZA

. Therefore, with the the change in the physical

parameter of interest ( ⇤ ), the minimum power required to power the chip

can be given by:

Pthreshold / (1� |�tag(⇤)|2)Gtag(⇤)Pt (2.5.2)

2.6 Tag Back-scattered Signal’s Power Strength

Consider the RFID reader antenna transmits signal at a power of Pt.

The transmission power density Dt [62, 93] at the tag at a distance r is as

follow:

Dt(✓t, �t) =
PtGt(✓t, �t)

4⇡r2
(2.6.1)

where Gt(✓t, �t) is the directional gain of the reader antenna, and ✓t and �t

are polar measures in the reader antenna’s coordinate system.

The tag antenna’s intercepted power from this dissipation is given by

the expression:

Ptag = Dt(✓t, �t)Ae (2.6.2)

where Ae is the e↵ective area of the tag antenna and expressed by Gtag(✓̂t,�̂t)⇢�2

4⇡ ,

Gtag(✓̂t, �̂t) is the directional gain of the tag antenna, � is the wavelength of

the reader’s signal, and ⇢ is the polarization loss factor, which is a function of

polarization mismatch between the reader and tag antennas.
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✓̂t and �̂t are polar measures in the tag’s coordinate system and ⇢

can be expressed as 1+⇢
2
1⇢

2
2+2⇢1⇢2cos(#1�#2)
(1+⇢21)(1+⇢22)

[150], where ⇢1ej#1 and ⇢2ej#2 are

the complex polarization ratios of the reader antenna and the tag antenna,

respectively. 1 However, when both the reader antenna and the tag antenna

are linearly polarized, the polarization loss factor (⇢) can be expressed as

⇢ = cos2(�), where � is the polarization mismatch between the two antennas.

Therefore, for a linearly polarized reader antenna and linearly polarized passive

tag antenna pair, Equation (2.6.2) becomes as follow:

Ptag = (
PtGt(✓t, �t)

4⇡r2
)(

Gtag(✓̂t, �̂t)cos2(�)�2

4⇡
) (2.6.3)

Let Ptag denote the power impinged upon tag and Pchip denote the

amount of harvested power that is transferred to the RFID chip (IC). It can

be expressed as follow [62, 93]:

Pchip = KPtag (2.6.4)

where K is the modulation loss of the tag antenna (the value is less than 1)

and depends on the impedance matching between the chip and tag antenna.

Using the free-space Friis’ equation model in the reverse side, we get

the received power (Prec) as follows (similar to Eq. (5.1.2)):

Prec = (
PchipGtag(✓̂t, �̂t)

4⇡r2
)(

Gt(✓t, �t)cos2(�)�2

4⇡
) (2.6.5)

1The absolute value polarization ratio ⇢ of any antenna depends on the axial ratio A
(calculated in dB), which can be expressed by 20log| ⇢+1

⇢�1 |.
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which becomes Eq. (2.6.6) by substituting Pchip in Eq. (2.6.5) by using Eq.

(2.6.3) and Eq. (2.6.4) :

Prec = PtGt(✓t, �t)
2Gtag(✓̂t, �̂t)

2Kcos4(�)(
�

4⇡r
)4 (2.6.6)

This indicates that

Prec / PtG
2
t
G2

tag
r�4Kcos4(�)

1

r4
(2.6.7)

Therefore, the back-scattered power received at the reader antenna is

related to the gain of both tag and reader (Gtag and Gt), the reader’s transmis-

sion power (Pt), the polarization loss factor (cos2(�)), the wavelength of the

transmitted wave (�), the distance (r) and modulation loss factor (K). When

the tag is moving in a specific geometric configuration, all factors, except

Pt and �, change. To accurately model the geometric configuration change

caused by movement, one must first model all these factors and then deduce

the probable received signal strength at the receiver side (Prec).
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Chapter 3

Related Work

In this section, we present related works on wireless tracking, localiza-

tion, sensing, and other adjacent applications. However, here, we mainly focus

on RFID based tracking and sensing techniques. In each of the sub-topics, we

explain the novelty of our systems.

3.1 RFID based Tracking and Sensing

The core idea of using RFID tags as an input mechanism or sensor

is not new. Researchers have used either tag with micro-controllers [157] or

passive tags in a COTS or custom setup. In the following, we explore the main

research trends using RFID technology.

RFID tags are used to recognize gestures or activities based on distinct

phase and Received Signal Strength (RSS) signatures. Researchers [209, 55]

have implemented a matrix of RFID tags with multiple antennas to detect

gestures. Recently, a few systems [78, 53] have used machine learning to mine

the phase data for predicting fine-grained exercising activities. For example,

Amandola et al. [53] detects multiple body segment movements using pas-

sive RFID tags. Kriara et al. [104] uses RFID based gesture recognition to
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pair related objects which can help in exciting gaming applications. Further-

more, researchers [95, 168] have also exploited the doppler frequency shift of

tag movement to detect individual customer behaviors like gazing or picking

activities. Rio is orthogonal to such works as it targets fine-grained swipe

tracking over a smaller area. Rio can be deployed in conjunction with such

activity recognition techniques for a comprehensive IoT environment.

Initial attempts have used RSS to calculate the distance between the

reader and the tag [130, 166, 156, 201]. However, due to its unreliability [90],

researchers have exploited phase information for better tag positioning [111,

182, 198]. Angle of Arrival (AoA) based approaches [97, 132] are impacted

by Non-Line of Sight (NLOS). Whereas, NLOS resilient Synthetic Aperture

Radar (SAR) inspired approaches create a RF map by multipath profile [182,

180, 164] or hologram [127, 198] or phase profile [167] to achieve median error

upto 1 cm [198]. For example, BackPos [111] has proposed a hyperbolic-

based positioning system using phase information with multiple RFID reader

(� 3) antennas with 13 cm median error. The technique of PinIt is further

applied in robot object manipulation [180] using a set of pre-deployed reference

tags. Moreover, Miesen et al. [127] employs the moving antenna to construct

SAR and find out the tag’s location with naive hologram. Unlike Rio, these

methods employ multiple antennas or moving the reader to locate the tag(s).

Wang et al. [184] track tag movement with 8cm median error by using

customized 8 antennas. Moreover, PolarDraw [165] uses two linearly polarized

COTS antennas and exploits polarization property to track a RFID tag. How-
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ever, Tagball [110] employs extended kalman filtering (EKF) [160] technique

on collected phase information to create a 3D mouse with 12 tagged object.

Fishkin et al. [82] has been able to use passive UHF RFID tags as a sensor

for detecting rotational motion using multiple readers. Another approach of

RFID tag tracking is based on proximity [91, 197, 112]. When the target

tag enters in the radio range of an antenna, its location is assumed to be the

same as this receiver. Furthermore, Tagyro [188] exploits phase information

of multiple tags to get the orientation of the object with a median error of

4 degrees. Another recent work [85] uses a chip-less tag with a Wi-Fi based

customized setup to detect human-object interaction. Rio is an evolution of

such systems into one that enables robust fine-grained tracking on 2D surfaces

using only a single antenna.

Early works [57, 121] use active tags as power-free buttons. Li et al.[108]

use a single antenna to enable motion detection in their object interaction de-

tection system called IDSense. It uses a Support Vector Machine (SVM) with

a Radial Basis Function (RBF) kernel to detect five classes of tag interactions

using PHY-layer features (RF Phase, RSSI, read rate, etc.). The SVM is

trained using 600 interaction instances and achieves up to 97% accuracy. Pa-

perID [107] is a similar work that uses supervised machine learning to detect 5

types of on-tag and free-air interactions with custom-designed RFID tags. It

achieves a 94% accuracy (testing done by 5 users) by using the trained model

from 150 instances at di↵erent locations. Rio improves upon these works by

achieving high accuracy (4% error rate) using o↵-the-shelf hardware and an
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extremely low training overhead (only 4 swipe instances required).

In the following Table 3.1, we highlight a set of prominent tracking and

sensing systems presented in the literature.

System Goal Key Innovation Limitation

RFind [115] Fine-grained tag tracking Large bandwidth use Custom USRP setup
with o↵-line tracking

Tagoram [198] Precise tag positioning Exploiting the phase
profile

Specific use case with
antenna array

RFCompass [180] Robot object manipulation SAR technique to build
multi-path profile

Coarse-grained track-
ing possible

PolarDraw [165] Tag movement tracking Exploits polarization
of passive tag

Recognizes only fixed
alphabet

PaperID [107] Object Interaction Custom tag design Huge amount of train-
ing needed

LiveTag [85] Touch Detection Chip-less tag compati-
ble with WiFi

Limited range with ex-
tensive calibration

IDSense [108] Object Interaction First COTS single an-
tenna solution

Detects only limited
set of user actions

Tagyro [188] 3D orientation detection Use of phase informa-
tion of multiple tags

Needs extensive initial
calibration

Femo [78] Exercise activity tracking Exploiting phase and
RSS information

Limited number of ac-
tivities after extensive
training

Table 3.1: Summary of a few passive RFID based tracking systems.

3.1.1 Passive RFID-based environment sensing

Marocco et al. [125, 123] observes that the change in tag signal RSS and

phase due to change in tag antenna performance is related to the change in

the environment. This observation underpins passive RFID tag-based analog

sensing, which embeds the sensed variable through their RF response. For

23



example, RFID tag designs used to measure temperature [54, 128], relative

humidity [63, 117, 119], and gas presence [137]. Smith et al.[143] proposes

building switches by connecting ICs with di↵erent IDs to the tag antennas.

These mechanisms can either be based on chipped or chip-less tags, within a

COTS or customized setup [202]. In a COTS setting, authors build a multiple-

tag based system [71] to detect the water level in a container is detected by

exploiting the ON-OFF switching. However, unlike RTSense, these works do

not robustly enable fine-grained environmental sensing. Similar to ours, [178]

proposes a COTS tag-pair approach with an implanted sensor but su↵ers from

a limited sensing range, resolution, and robustness.

Moreover, [196] creates custom-designed RFID tags that embed a small

amount of distilled water, making their wireless response temperature sensi-

tive. [170] uses a bimetallic strip with a tag’s antenna to detect displacement.

Authors also build customized tags exploiting the impedance change property,

to sense on-body temperature [54, 128], relative humidity [63, 117, 119], and

even, gas presence [137]. Smith et al. [143] build novel switches by connecting

ICs to di↵erent tag antennas. The authors in [158] design a custom back-

scatter circuit to use the tag antenna for sensing purposes. This work [58]

proposes the use of a specific patch-antenna design for temperature sensing,

which is unlike RTSense not compatible with a COTS setup. All these ap-

proaches require custom tag designs in a wired setup, making them relatively

expensive and less practical. These works though propose [70, 124] a few

setup-independent metrics like AID but are limited to the chemical presence
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and relative humidity [68] sensing.

3.1.2 Battery-assisted RFID based environment sensing

Authors in these works [57, 121] use active RFID tags as input but-

tons. Researchers have also used active tags with microcontrollers [158] for

the sensing purpose. In this active tag-based setup, the sensed parameter is

stored on the tag chip memory, which will be forwarded to a specific reader.

Examples include the RFM3200, a wireless flexible temperature sensor from

RFMicron Inc. [15], WISPs [202] and Ekhonet [205]. The need for writing into

the tag memory makes tag costly and there is a need of customized readers.

For example, temperature-sensing tags from RFMicron cost about 30 USD. In

contrast, RTSense used inexpensive passive RFID tags that cost only about

0.03 - 0.05 USD each. Unlike these works, we propose a simple COTS tag-pair

design exploiting the antenna surface area for analog sensing of temperature.

Moreover, we also propose phase-based metric to improve the resolution, range,

and robustness.

3.2 Other Sensing and Tracking Techniques

Apart from battery-free passive RFID tag driven techniques to sense

or track, there are di↵erent other modalities available in the literature.
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3.2.1 IMU, Wearables, and Camera based Motion Tracking

In mobile and wearable devices, the state-of-the-art orientation sensing

is probably achieved by A3 [208] and MUSE [169]. Compared to the orienta-

tion, tracking moving distance with inertial sensors is a relatively more chal-

lenging endeavor. Prior works only track coarse-grained inertial distance for

short-time motion, by counting steps and estimating step lengths [176, 200].

However, low-cost inertial sensors are hardly able to track precise distance

[98].

Recently, researchers in [80, 83, 84, 126, 89] embed IMUs in a cricket

ball to extract relevant features such as angular velocity, time of flight, ranging

etc. Moreover, [100] measures spin-analytics in the context of a bowling ball.

Di↵erent startups like Zepp, Mi Coach, and Ball are extracting the players’

motion patterns using wearables. Hawk-Eye [9] uses camera-based tracking

technology for fine-grained ball tracking, which has been o�cially included

in Cricket, Tennis, etc. Furthermore, Hot Spot [11] is another popular IR

technology used to determine contact points between ball and players.

3.2.2 Other Wireless Techniques for Tracking and Sensing

Numerous e↵orts have been devoted to wireless tracking and sensing

during the past decades. Many existing works employ di↵erent channel param-

eters for tracking, such as Angle of Arrival (AoA) [101, 105, 194], Time of Flight

(ToF) [87, 161], or their fusion [192, 146]. The latest of them [103] pushes the

accuracy to sub-centimeter level. These approaches, however, usually require
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a large phased array or a large frequency bandwidth, typically together with

clear Line-Of-Sight (LOS) condition, to achieve good performance. E↵orts

have been made to expand bandwidth by frequency hopping [191, 175] and

extend antenna array [193], which however incur extra spectrum or hardware

overhead. In addition, the existing works require cooperation across multiple

APs (four or five) [194, 101, 106] A few prior proposals attempt to track using a

single AP, which again, still need precise AP location and orientation [29,35],

or achieves decimeter accuracy [161, 175]. Moreover, many of the existing

works degrade or fail in NLOS conditions.

Other related leverage fingerprinting of dense APs [59, 149, 163]. [141]

employs Channel Impulse Response (CIR) for movement detection but does

not address motion tracking. Centimeter granularity fingerprinting is studied

using CIR [190], which is further enhanced by multiple antennas [74] and

by frequency hopping [73]. These proposals require exhaustive calibration

before deployment and deteriorate due to temporal dynamics. Moreover, the

emerging 802.11mc [21] and Bluetooth 5.1 [5] standards provide round trip

time and AoA measurement respectively. Both of these strategies, however,

o↵er limited accuracy, especially in indoor environments.
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Chapter 4

RIO: RFID based Touch Interface

In this chapter1, we explore the design of a battery-free fine-grained

touch gesture input interface leveraging passive Radio Frequency IDentifica-

tion (RFID) technology. Specifically, we improve upon existing works by ask-

ing and answering an important question: Can we use commercial o↵-the-shelf

(COTS) RFIDs as a battery-free, low-cost, fine-grained touch-based user input

primitive? (Fig. 4.1a),

4.1 Overview

In this chapter, we design and build such an input primitive using

COTS RFID readers and tags. We call this primitive Rio, for RFID-based

Input / Output. Rio turns COTS RFID tags into touch interfaces: a user

interacts with Rio by touching the tag, and Rio accurately tracks the touch

1This chapter is based on the following published work: Swadhin Pradhan, Eugene

Chai, Karthikeyan Sundaresan, Lili Qiu, Mohammad A. Khojastepour, and Sampath Ran-

garajan. 2017. RIO: A Pervasive RFID-based Touch Gesture Interface. In Proceed-

ings of the 23rd Annual International Conference on Mobile Computing and Networking

(MobiCom 17). Association for Computing Machinery, New York, NY, USA, 261274.

DOI:https://doi.org/10.1145/3117811.3117818. I am the principal author of this publica-
tion who is primarily responsible for formulating the problem, coming up with the solution,
performing the extensive evaluation, and writing up the paper.
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Figure 4.1: Example applications of Rio.

as it moves over the surface of a tag. Rio uses a novel technique of impedance

tracking in back-scatter communications. The human body is conductive,

with a capacitance on the order of hundreds of picofarads (pF ) and a resis-

tance of hundreds to thousands of Ohms [52, 99]. When a user touches an

RFID tag, his/her body conductivity changes the e↵ective impedance of the

tag antenna. This impedance change manifests as a change in the phase of the

back-scattered signal. Rio tracks this phase change to determine the location

of the finger within a tag. By accurately modeling the relationship between

impedance and RF phase, this fine-grained tracking can be achieved with min-

imal training overhead. Our evaluations show a tracking error of under 4%

with only 4 training events (vs. 600 training events for IDSense [108]).

Rio o↵ers three key features that make it ideal for IoT setting:

(i) Fine-Grained Accuracy. Rio detects finger taps on RFID tags with

100% accuracy, and tracks finger swipe positions to within 3mm of its correct

position (validated using a camera and OpenCV for finger tracking). This
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is achieved using o↵-the-shelf RFID tags, thus enabling a new battery-free,

fine-grained and accurate UI primitive for smart-spaces.

(ii) Low-cost Hardware. Rio makes use of COTS RFID tags. We

have tested Rio with a variety of tags, an example of which is the Monza 4D

Dogbone tag [33]. These tags are extremely low-cost and can be purchased for

as low as 14-cents each. The low-cost nature of RFID tags lowers the barrier

to smart spaces as large numbers of tags can be installed within an area easily.

(iii) Customizable User Interface. Rio also supports custom-designed

RFID tags. We build tags with custom-shaped antennas by laying out the

antennas with copper metal tape and inductively couple them to small near-

field RFID tags. Rio tracks touch gestures over these custom antennas, and

thus enables custom, application-specific interfaces to be built.

In the following, we describe the details of Rio.

4.2 Human Touch Primitive

Human touch on the RFID tag changes the e↵ective impedance of the

antenna, and will, in turn, influence the phase of the back-scattered signal.

In this section, we show how this phase-change behavior is used as a reliable

and robust primitive for touch/gesture tracking in both single tag and multi-

tag settings, and in the presence of artifacts such as multi-path and inter-tag

coupling. We accomplish this with the help of both controlled and over-the-

air measurements, and an analytical model that highlights the fundamental
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Figure 4.2: Equipment and tags used in the swipe experiment.

relationship between impedance change and the RF phase.

4.2.1 How Does Human Touch Change the Backscatter Phase of a
Single RFID Tag?

Fig. 4.2a illustrates the measurement setup that is used to study the

touch-induced performance of the RFID tag. We attach a single RFID tag

that is 1.5 ⇥ 10cm in size (shown in Fig. 4.2b) on a flat surface, and place

a 9dBi circularly polarized RFID antenna 50cm directly below it. An Impinj

R420 RFID reader powers the antenna. The camera in Fig. 4.2a only used in

later sections for accuracy measurements. For clarity, we divide the tag into 9

equal subsections, as shown in Fig. 4.2b. Position 5 corresponds to the middle,

while 1 and 9 are at the two ends of the tag.
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(a) Simple touch. (b) Swipe on surface. (c) Swipe along edge.

Figure 4.3: Touch gestures.

We perform three gestures, as illustrated in Fig. 4.3: a simple touch

gesture where we touch one end of the tag (Fig. 4.3a), a swipe gesture where

we start with a finger on one end of the RFID tag and move across the length

of the tag at constant speed (Fig. 4.3b), and a swipe gesture that is performed

along the edge of the tag but without touching the tag itself (Fig. 4.3c). The

RFID reader continuously queries the RFID tag during the entire swipe ges-

ture at a rate of ⇠200 reads/second. We use the Octane SDK [30] together

with the Impinj R420 reader to obtain the phase and magnitude of the back-

scattered responses from the RFID tag. We make four observations from our

experiments:

(1) Human touch induces significant phase changes in the

back-scattered response. Fig 4.4a shows the back-scattered phase of the

RFID tag when a simple touch is applied from 1 to 3 seconds after the start

of the experiment. Observe that during this time interval, the back-scattered

phase jumps from 3.5 to 4.8 radians. The signal phase returns to 3.5 radi-
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Figure 4.4: Phase of backscattered RFID signals.

ans once the touch is removed. This phenomenon demonstrates that a simple

touch will induce a significant phase change (1.3 radians in this experiment).

It is a simple method to detect a touch gesture on an RFID tag. This amount

of phase change varies between tags and can either increase or decrease in

response to human touch.

(2) A swipe gesture induces di↵erent phase changes as the

finger moves over the tag. Fig. 4.4b shows the absolute backscattered

phase under the two di↵erent swipe gestures. Observe that with the swipe

gesture over the RFID tag, the amount that the phase changes compared to

an untouched tag varies depending on the position of the finger. This phase

trend follows a symmetrical bell-shape, with about 3 radians between the

highest and lowest phases, and starting from one end of the tag, the largest

phase-change is seen when the swipe crosses its middle.

(3) Human touch is the dominant cause of phase changes.
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Figure 4.5: Phase-change pattern of backscatter signals with tag in NLOS
locations.

Fig. 4.4b also shows the phase of the back-scattered signal when the swipe

gesture is performed without touching the antenna on the tag. Observe that

while some phase changes are present, they are much less significant than when

the touch gesture is performed directly on the tag. This observation, together

with the measurement under NLOS conditions, shows that the dominant e↵ect

due to human touch can be measured under varying channel conditions.

(4) Phase behavior is resilient to multi-path. In order to study

the e↵ect of non-line-of-sight (NLOS), we repeat the swiping gesture but with

the tag and reader in di↵erent positions by separating them with (a) a wall,

and (b) a door. The reader and tag are 2m apart. Under such conditions,

the indirect signal paths and associated multi-path distortion have a more

significant impact on the back-scattered signal. Note that the maximum range

at which an RFID tag can be read depends on both the RFID reader and the

tag. Our Monza R6 tags have a theoretical maximum read range of over 6m,
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but practically, this limit is close to the 2m used in our NLOS experiment.

Fig. 4.5 shows the phase of the back-scattered signal under these two

conditions (labeled Touched). The baseline plot shows the RF the phase of the

RFID tag without any human contact. Observe that even in NLOS situations,

the bell-shaped phase change behavior seen earlier is maintained. Hence, even

though multi-path and NLOS e↵ects can influence the RF phase readings,

the impact of human touch on the phase of the back-scattered the signal is

dominant.

4.2.2 Why Does the Backscatter Phase Change with Human Touch?

The human body can be modeled as an electrical circuit with an equiv-

alent resistance and capacitance [75]. In particular, the human skin has a

capacitance equivalent to hundreds of picofarads (pF ) [99]. When a human

touch is established with the RFID antenna, capacitive coupling [61] is estab-

lished between the human and the RFID antenna at the point of contact. We

explain the impact of this coupling and verify its influence on the back-scatter

phase through real-world VNA circuit measurements.

4.2.2.1 Capacitive Coupling

The radiation of RF signals from the RFID tag antenna is the result

of time-varying current induced within the antenna. A change in the phase

of this current will induce a corresponding phase change in the associated RF

radiation [155, 67]. Hence, to understand how the phase of the back-scattered
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signal changes, it is helpful to know how the phase of this induced current is

a↵ected by touch. The RFID tag in our experiments uses a dipole antenna [172]

for backscatter communications. Using a simplified model of dipole antennas,

the current induced in the RFID antenna can be mathematically expressed

as [67]

Im = � Einc

(ZC + ZA)� cos2(�L/4)
(4.2.1)

where ZC and ZA are the impedances of the RFID chip and antenna, respec-

tively, Einc is the incident electric field on the RFID antenna, L is the length of

the antenna, and � is the free-space phase constant. If the e↵ective impedance

of the antenna ZA is changed, (4.2.1) shows that the induced current, and

by extension, the back-scattered electric field and signal, will undergo a cor-

responding change in phase and magnitude [172]. However, how does human

touch change the antenna impedance?

Through capacitive coupling, the human body becomes an extension

of the RFID antenna. The e↵ective impedance of the RFID antenna, ZA, as

presented to the RFID chip, is now a sum of the impedance of the antenna

without human touch and the impedance introduced by the human finger. A

change in phase in this e↵ective impedance will cause a corresponding phase

change in the current distribution within the antenna. As a result, the phase

of the back-scattered signal changes in response to human touch.
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Figure 4.6: Vector Network Analyzer (VNA) measurement.

4.2.2.2 VNA Measurements

We directly measure this the impedance change due to human touch

using an Array Solutions Vector Network Analyzer (VNA) [23]. We use the

same RFID tag from Fig. 4.2b, but disconnect the RFID chip from the antenna,

and solder the feed points of the RFID antenna directly to the electrical leads

of the VNA. Fig. 4.6b shows the modified tag used for our VNA measurements.

Using this setup, we can induce electrical currents within the RFID antenna,

and directly measure the impedance in the antenna.

We again divide the tag into 9 equal subsections and measure the an-

tenna’s impedance when a human touch is applied to each of the 9 points.

Fig. 4.7 shows the magnitude and phase of this measured impedance. Observe

that the impedance change also follows a symmetric bell-shaped pattern, with

the largest magnitude and phase changes occurring when the human touches

the middle of the tag.
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Figure 4.7: Tag impedance change due to human touch.

4.2.3 Human Touch on a Multi-Tag Array

Mutual coupling between one or more RFID tags nearby can distort the

phase and magnitude of the back-scattered signal during a swipe gesture [174,

29]. For example, Fig. 4.8a shows the phase trends of four swipe events over

a single RFID tag when (a) there are no other tags nearby, and (b) three

examples when there is one other tag, placed 5mm away from it.

Observe that due to mutual coupling, the phase can even be almost

invariant at several tag locations when one other tag is adjacent (e.g., positions

6 to 9 in Fig.4.8a for “w/ adj tag 3”). In the other two swipes with adjacent

tags, the dynamic ranges of phase changes reduce to around 0.9 radian. This

phenomenon is equivalent to a reduction in the signal-to-noise ratio (SNR) of

the phase data obtained by the RFID reader. Furthermore, Fig. 4.8b illustrates

that dynamic range of phase change in both halves of the curve for mutual

coupling scenarios is on an average 1 radian less than the case when no tag is
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Figure 4.8: Phase behavior with or without nearby tags.

nearby. This reduction poses a challenge for Rio as a low SNR phase data is

correlated with worse finger tracking accuracy.

To overcome this challenge, we now try to understand how mutual

coupling between tags a↵ects our primitive.

4.2.3.1 Inverted Phase Behavior

Our experiments show that due to mutual coupling when a human

touch is applied to a tag, the trend of its phase change is the opposite of those

seen in adjacent tags.

Fig. 4.9 shows the tag layout used in this experiment, with each pair of

adjacent tags separated by 5mm. To highlight the e↵ect of mutual coupling,

we consider only three tags in this array, labeled i� 1, i and i + 1. We swipe

across tag i and record the phase of tags i� 1, i and i + 1.

Fig. 4.11 shows the phase of the back-scatter signal measured from
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these three tags. Observe that due to mutual coupling, tag i experiences a

smaller range (around 2 radian lesser) of phase variations during the swipe

gesture. However, the trend of the phase changes show an interesting pattern:

observe that as the swipe gesture moves across tag i, an increase in its phase

coincides with a decrease in the phase of tags i � 1 and i + 1. We refer to

this phenomenon as the inverted phase behavior of adjacent tags. The impact

of such mutual coupling diminishes as we consider tags that are farther away

than the adjacent tags.

4.2.3.2 Why is the trend of phase changes in adjacent tags in-
verted?

Model: To understand the impact of mutual coupling on tag interaction, we

model the basic scenario of coupling between two tags. The equivalent circuit

of the two tags can be represented as shown in Fig. 4.10. Here, Vs1 and Vs2

are the equivalent source voltages induced by the reader’s signal on the tag

antenna, with Zs1 and Zs2 being the corresponding chip impedances, and Z11

and Z22 being their respective antenna self-impedances.

The current in tag 1, I1 induces a magnetic field, which couples tag 1

and tag 2, thereby inducing a coupled voltage in tag 2, V21, where V21 = I1Z21,

and Z21 is the mutual impedance in tag 2 due to tag 1. Similarly, we have the

coupled voltage in tag 1 as V12 = I2Z12. Now, taking mutual coupling into

account, the resulting voltages, for tag 1 and tag 2 respectively, can be written
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as,

I1(Z11 + Zs1) = Vs1 + I2Z12

I2(Z22 + Zs2) = Vs2 + I1Z21 (4.2.2)

When a tag is interrogated, the back-scattered field (signal) from a

tag is a function of the current in the tag. Hence, it su�ces for the analysis

to focus on the currents in the two tags to understand how interacting with

one tag changes the current in the mutually coupled tag. Solving for the two

currents in Equation 4.2.2, we get,

I1 =
Vs1Z̃22 + Vs2Z12

Z̃11Z̃22 � Z12Z21

; I2 =
Vs2Z̃11 + Vs1Z21

Z̃11Z̃22 � Z12Z21

(4.2.3)

where Z̃11 = Zs1 + Z11 and Z̃22 = Zs2 + Z22.

Phase Change during Tag Interaction: Note that we are interested in

modeling the change in phase of the signal received by the reader when a

user is interacting with the tag being interrogated or a nearby tag. When a

tag is interrogated, the signal received by the reader is a combination of the

back-scattered signal from the desired tag as well as the scattered signal from

the other tags (which serve as simple scatterers). We will assume that the

contribution of the scattered signals is negligible relative to that of mutual

coupling from nearby tags. In this case, the phase of the received signal can

be estimated from the phase of the current of the back-scattered signal, while

accounting for mutual coupling with nearby tags. The phase of the currents

in the two tags, I1 and I2, can be written as,

\I1 = �1 � �m, and \I2 = �2 � �m (4.2.4)
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where �1, �2 and �m are the phases of (Vs1Z̃22 + Vs2Z12), (Vs2Z̃11 + Vs1Z21),

and (Z̃11Z̃22 � Z12Z21) respectively.

Now, let us consider the case when the user interacts (touching or

swiping) with tag 2. This will change the self impedance of Z22 as well as

its coupled impedance Z12 on tag 1, while the chip impedances Zs1, Zs2 and

tag 1’s self (Z11) and induced (Z21) impedances will not change. Hence, while

phases �1 and �m will change, �2 will remain constant. The phase-change

behavior can now be captured as,

\I1(t) = �1(t)� �m(t)

\I2(t) = �2 � �m(t)

where, �1(t) = \(Vs1Zs2 + Vs1Z22(t) + Vs2Z12(t))

�m(t) = \
⇣
Z̃11Zs2 + Z̃11Z22(t)� Z21Z12(t)

⌘

From the above equation, it can be observed that �1(t) and �m(t) are

essentially functions of the same impedance changes, namely Z22(t) and Z12(t).

However, the change in Z12(t) has an opposite e↵ect in �1(t) compared to that

in �m(t). This situation contributes to a counter-acting e↵ect on the phase

change of I1(t) compared to I2(t) (i.e., tag being touched), and results in the

inverted phase-change behavior between the tags. To highlight this impact, we

plot the phase evolution of I1(t) and I2(t) in Fig. 4.12. Here, Z22(t) is assumed

to vary as a sine function during human interaction (for illustration). In

contrast, Z12(t) is assumed to vary proportionally to Z22(t) (in both magnitude
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and phase), and the rest of the non-varying complex quantities are assumed

to be real with unit magnitude.

Thus, while leveraging the primitive for tracking could reduce accuracy

in the presence of mutual coupling, the above measurements, and analysis

highlight the predictable impact of mutual coupling on our primitive. Hence,

by leveraging the phase-change behavior across neighboring tags jointly, our

primitive can be made robust to mutual coupling in multi-tag settings.

4.3 RIO Design

Leveraging the above characteristics of the primitive, we now design

the algorithms needed to track the human finger’s path during a swipe gesture

across a single isolated tag and across any individual tag within a tag array.

Note that for the sake of simplicity, Rio only tracks a continuous, one-direction

swipe across a tag starting from location 1 and ending at 9, as shown in

Fig. 4.3b. This is not a fundamental limitation of Rio, and the algorithms

can be extended to support arbitrary touch movement within a tag.

4.3.1 Finger Tracking on a Single RFID Tag

Single-tag swipe tracking is done in two stages. Rio first detects a

touch event on the tag. Once a touch is detected, Rio uses an online tracking

algorithm, Rio-Single, to track a human finger’s position across the single

tag. A simple, low-overhead calibration is first performed on a tag attached

to a surface to determine the precise characteristics of the bell-shaped phase
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trend. This calibration overhead is small and needs to be performed only once

after the tag is first installed. Rio then uses a tracking algorithm based on

segmental dynamic time warping (SDTW) [139, 206, 140] that allows for good

tracking accuracy with only limited calibration overhead.

4.3.1.1 Low-Overhead Tag Calibration

Tag calibration has to be conducted once after the tag is installed on

a surface. During tag calibration, the user swipes his/her finger across the

surface of the RFID tag at constant speed (as constant as possible), while

the Impinj R420 RFID reader continuously reads the tag at a rate of 200

reads/second, and records the phases of all backscatter responses. Rio nor-

malizes the phase responses w.r.t. the lowest value:

p(x) = r(x)�min
x

r(x), 0  x  L (4.3.1)

where r(x) is the unnormalized (i.e. raw) phase values at location x from the

calibration swipe across a tag of length L. Rio then uses polynomial curve-

fitting to find the fourth-order polynomial that best describes the normalized

calibration data.

Overhead. This calibration is repeated four (4) times. Rio uses the

average of the four polynomial curves in the next touch detection/tracking

step. This low-overhead calibration step is (a) not user-specific, and (b) only

specific to the installed location of the tag. Hence, each installed tag only

needs to be calibrated once before touch tracking is enabled for all users after
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that. Due to human limits, it is not possible to replicate a swipe with a

human finger precisely. We have empirically determined that the average of

four swipes is su�cient to capture the key behavior of an actual human swipe.

We have validated this by having one person calibrate the tag, and evaluating

the tracking accuracy of Rio with fifteen (15) other human individuals. Our

tracking error remains under 4% for all the sixteen (16) individuals. Note that

we do not need to re-calibrate Rio if only the antenna’s reading angle or the

tag changes. However, if there is some considerable change in the environment

(e.g., the introduction of more blockage due to new types of furniture or more

dynamic paths due to increased movements of people), we need to re-calibrate

to create the primary phase trend to achieve accurate tracking.
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4.3.1.2 Rio-Single Algorithm

Rio uses a two-stage approach to finger tracking. Rio continuously

reads the RFID tag until it detects a touch event. Once a touch has been

detected, Rio switches to a tracking stage where it tracks the position of the

finger as it is swiped across the RFID tag.

Touch Detection. A touch event results in a significant change in the

phase of the response signal from the tag. Rio queries the tag continuously

and finds the average signal phase over every time interval of T seconds. If a

significant change is seen from a one-time interval to the next (a change larger

than a threshold C), then a touch event has occurred, and Rio switches to a

tracking mode. Rio uses a threshold of C = 0.9 radians, which is empirically

determined to provide 100% detection accuracy in real-world conditions.

Touch Tracking. Rio updates the finger’s location during a swipe

gesture using a segmental dynamic time warping (SDTW) search algorithm. A

good overview of SDTW can be found in [140]. Broadly speaking, SDTW com-

pares two sequence segments by stretching and squeezing (i.e., warping) one

of the sequences until an optimal match between them is found. The SDTW

algorithm returns the measure of similarity between these two sequences at

this optimal match.

Fig. 4.13 illustrates how Rio updates the estimated location of the fin-

ger in real-time. Rio first collects a sequence of phases of all back-scatter

responses over a time window of T seconds. Starting from the previously es-
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timated position of the finger, Rio begins a DTW matching by warping the

collected sequence and comparing it against multiple segments of the calibra-

tion phase data. These segments start from the last known position of the

finger and have varying lengths that span the range of potential new posi-

tions, as shown in Fig. 4.13. The segment with the best match is chosen, and

its corresponding end position is taken as the new position of the finger.

This search-and-update step is continuously repeated as Rio tracks

the finger over the surface of the tag. The details of the touch detection and

tracking algorithms are described in Algorithm 1.

Rio estimates the finger location after every time interval of T sec-

onds. The choice of T determines the latency and processing overhead of each

location estimate. In our implementation of Rio, we use T = 0.5s as we

have empirically determined it to be suitable for a typical swiping speed. We

have evaluated the performance of Rio for other values of T and found the

performance to be similar.

In Algorithm 1, Rio performs a DTW search over a range of segment

sizes, as specified by xmin and xmax in Algorithm 1. xmin and xmax determine

the lower and upper ranges of swipe gesture speeds that will be accurately

tracked by Rio. The greater the value of xmax the higher the upper bound of

this speed limit. Similarly, the smaller the value of xmin, the slower the lower

bound on the speed limit. We select xmin and xmax to correspond to 0.5T and

1.5T seconds of calibration data respectively, which is equivalent to a swiping

speed of 10 to 15mm/s.
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Algorithm 1 Rio-Single

1: x0  current finger location; xmax  max finger location w.r.t. x0;
2: xmin  min finger location w.r.t. x0; p(x) calibration data;
3: procedure DTW(a,b)
4: return DTW distance between sequences a and b;
5: end procedure
6: procedure minDTW(x0, x1,w, p(x))
7: p {p(x)|x0  x  x1}; . Segment of calibration phase data

between x0 and x1

8: return DTW(w, p� p(x0));
9: end procedure

10: procedure getPhaseData
11: t0  currentSystemTime;
12: t t0; w emptyVector;
13: while t  t0 + T do
14: t currentSystemTime;
15: w append(w, currentPhaseReading);
16: end while
17: return w �min(w);
18: end procedure
19: procedure updateLocation(x0,w)
20: xnew  argmin

xmin<x<xmax
minDTW(x0, x,w);

21: return xnew;
22: end procedure
23: procedure touchDetection
24: while True do
25: w getPhaseData;
26: if mean(w) > C then return True;
27: end if
28: end while
29: end procedure
30: procedure touchTracking
31: while True do
32: w getPhaseData;
33: x0  updateLocation(x0,w);
34: end while
35: end procedure
36: touchDetection(); touchTracking();
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4.3.1.3 Computation Overhead

The computational overhead of finger tracking is dominated by the

DTW algorithm, which has a complexity of O(N2). In practice, Rio samples

M equally spaced sample sizes from the range of xmin and xmax, and per-

forms a location update (procedure updateLocation in Algorithm 1) over

these M samples. The larger the number of samples M , the finer the tracking

resolution. However, the overhead of the corresponding search will also be

significantly greater. By default, Rio uses M = 200 to achieve high accuracy.

However, our empirical evaluations, as shown in Fig. 4.23, show that we can

reduce M to 50 with only a slight reduction in accuracy, but gain a 4⇥ re-

duction in computation delay. With M = 50, each full tracking update step

can be accomplished in under a second, thus enabling real-time tracking of

the finger position. Hence, an interface that is built with Rio can tune M to

match the desired accuracy-overhead trade-o↵.

4.3.2 Finger Tracking on a Multi Tag Array

We consider the tag array layout, as illustrated in Fig. 4.9. Rio tracks

a finger on a multi-RFID tag array with two steps. Rio first identifies the

tag that the finger is touching, while accounting for mutual coupling. Once

Rio determines the tag that is touched, it uses a multi-tag tracking algorithm

(using neighboring tags) to continuously localize the finger during the swipe

gesture.
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4.3.2.1 Tag Calibration

As in the single tag case of §4.3.1.1, calibration has to be performed

on the tag array only once after installation. Rio collects and normalizes the

phases as the user swipes his/her finger across each tag in the array, as shown

in Fig. 4.9. We use p1(x), . . . , pN(x) to refer to the normalized phases from

the N tags in the array.

4.3.2.2 Rio-Multi Algorithm

Algorithm 2 Rio-Multi: Touch Detection

1: procedure phaseDiff(w)
2: s linearRegression(w)
3: return max{s}�min{s}
4: end procedure
5: procedure touchDetect(w1, . . . ,wN , L)
6: for i = 1, . . . , N do
7: di  phaseDiff(wi)
8: end for
9: for i = 1, . . . , N do

10: if i = 1 then
11: mi  ↵di � �di+1

12: else if i = N then
13: mi  ↵di � �di�1
14: else
15: mi  ↵di � �(di�1 + di+1)
16: end if
17: end for
18: i(1)  argmax

i2{1,...,N}
mi

19: return i(1)

20: end procedure

Touch Detection. Touch detection operates on the back-scatter phase from
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all N tags over a time window T . We use w1, . . . ,wN to refer to these N

vectors of phase data. Informally, Rio determines the total change in phase

encountered by each tag over this time window. It then searches for the tag

triple (or tag pair, in the case of the tags at either end of the array) that best

demonstrates the inverted phase behavior as described in §4.2.3: for a given

tag i, the change in phase of its neighboring tags i�1 and i+1 are the inverse

of its own.

Algorithm 2 shows the pseudo-code for touch detection. The phaseD-

iff procedure determines the phase changes over the window of phase data.

Rio smooths out the noise in the phase data by fitting the best line through

the phase data using linear regression. The phase change of each tag, di, is

the di↵erence between the two extreme points on the line. Rio computes a

weighted sum of the phase change of each tag i and its neighboring tags as

mi = ↵di��(di�1+di+1). By selecting weights ↵ and � with opposite polarity,

Rio can capture the e↵ect of the inverse phase behavior of tag triples (or tag

pairs). Empirically, we have found that the touch and tracking accuracy of

Rio is best when ↵ = 0.8 and � = 0.2.

Touch Tracking. Once Rio has determined the specific tag that is being

touched, it immediately begins reading phase data from that tag i, along with

tags that are directly adjacent to it, tags i � 1 and i + 1 (if any). Fig. 4.14

illustrates how the segmental DTW search is extended to support two adjacent

RFID tags. Rio conducts concurrent DTW searches on these three tags (or

two tags, if i is an edge tag), using the same segment sizes for each step in the
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Algorithm 3 Rio-Multi: Touch Tracking

1: x0  0 . Current finger location
2: w1, . . . ,wN  getAllPhaseData
3: imax  touchDetect(w1, . . . ,wN , L)
4: procedure minMultiDTW(x0, x,wi�1,wi,wi+1)
5: gi  minDTW(x0, x,wi, pi)
6: gi�1  minDTW(x0, x,wi�1, pi�1)
7: gi+1  minDTW(x0, x,wi+1, pi+1)
8: h ↵gi + �(gi�1 + gi+1)
9: return h

10: end procedure
11: procedure updateLocation(x0,wi�1,wi,wi+1)
12: xnew  argmin

xminxxmax

minMultiDTW(x0, x,wi�1,wi,wi+1)

13: return xnew

14: end procedure
15: while True do
16: x0  updateLocation(x0,wimax�1,wimax ,wimax+1)
17: wimax  getPhaseData
18: wimax�1  getPhaseData
19: wimax+1  getPhaseData
20: end while
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DTW search. The segment size that best matches the phase data from the

three tags will indicate the new finger location.

Algorithm 3 shows the multi-tag tracking algorithm. The maxMul-

tiDTW procedure performs the multi-tag DTW search jointly on sets of

three adjacent tags and combines the results using the weighted metric h =

↵gi+�(gi�1+ gi+1) where gi, gi+1 and gi�1 is the DTW distance of tag i, i� 1

and i + 1 respectively. This metric identifies segments that match the phase

pattern in the desired tag and the inverted phase pattern in the adjacent tags

to boost the tracking accuracy. The segment identified in the updateLoca-

tion procedure is used to update the new location of the finger during the

swipe. As before, Rio runs this search-and-update procedure continuously to

track the location of the finger.

4.3.2.3 Scaling to Larger Multi-Tag Arrays

RFID readers achieve a constant number of reads/second (200 in case

of our Impinj reader), regardless of the number of tags within the read range.

Hence, when the array size is enormous, the read rate per tag decreases, which

reduces the fidelity of the phase data, and consequently, the accuracy of both

touch and gesture tracking. Rio addresses this by utilizing the PHY-layer

filtering feature [34] of the RFID Class 1 Generation 2 (C1G2) protocol to

read-only subsections of the array at a time. After Rio-Multi detects the

tag that is being touched, Rio applies the RFID filter to read up to eight tags

around the tag that is touched (four on either side). The Rio-Multi touch
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Figure 4.15: Custom-designed RFID tags.

tracking then tracks the swipe gesture on the touched tag.

4.4 Extending RIO with Custom Designed RFID Tags

COTS RFID tags are designed primarily for communications. Hence,

the antennas are typically dipole antennas and have sizes and shapes that

are carefully tuned to match the RFID chip’s electrical impedance [134]. The

limited variety in antenna designs restricts the range of user interfaces that

can be built using COTS tags. In this section, we discuss Rio’s potential by

exploring how it can operate with custom-built RFID tags of varying shapes

and sizes. This exposition will allow the user interfaces built using our touch

primitive to be better customized to the specific demands of smart spaces.

Constructing Custom RFID Tags. We extend Rio to support

custom-designed RFID tags, two of which are shown in Fig. 4.15. The antenna

of the tags is constructed using a copper metal tape, arranged in shapes that

can better mimic familiar control interfaces. For example, Fig. 4.15a shows a

circle RFID antenna that resembles a round control knob. A user can swipe in
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either clockwise or counter-clockwise directions to adjust the music volume, or

light brightness, etc. Owners of the iPod Classic with the click wheel [26] will

find this interface familiar. A small near-field RFID tag [22] with an adhesive

side is attached to the custom-built antenna, as shown. The antenna forms

an inductively coupled connection with the near-field RFID tag, and touching

the antenna will result in a familiar phase change in the back-scattered signal.

Antenna Design Space. The antennas shown in Fig. 4.15 are ex-

amples of loop antennas [151]. We use loop antennas because they have the

advantage of being easy to construct in various shapes and sizes. Our demon-

stration only uses basic shapes (a circle and a triangle), but many other an-

tenna structures such as folded dipoles [114], coil [32] and cloverleafs [77] can

be used as building blocks for more complex interfaces.

In order for the antenna to operate at maximum e�ciency, the antenna

layout must be tuned such that its impedance matches the impedance of the

RFID chip. Our custom RFID antennas are designed primarily to mimic

real-world control interfaces, and are not impedance-matched to the RFID

chip. However, even with this sub-optimality, our experiments show that our

custom tags can be read at ranges of up to 1.5m, which is comparable to the

performance of COTS RFID tags 2.4m.

Tracking on Custom Tags. Fig. 4.16 shows the phase trends when

clock-wise and counter-clockwise swipes are performed on the tags (Fig. 4.15).

Observe that the phase trends show distinctive patterns and large phase vari-

ations (similar to those seen in COTS RFID tags) that can accurately locate

56



-4
-2
 0
 2
 4
 6
 8

 10
 12
 14

1,7 2,6 3,5 4,4 5,3 6,2 7,1

P
h

a
se

 (
in

 r
a

d
ia

n
)

Relative position on the tag

CW
CCW

No touch

(a) Circle tag.

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

1,9
2,8

3,7
4,6

5,5
6,4

7,3
8,2

9,1

P
h

a
se

 (
in

 r
a

d
ia

n
)

Position on the tag

CW
CCW

No touch

(b) Triangle tag.
Figure 4.16: Phase trends when a clockwise (CW) and counter-clockwise
(CCW) swipe gestures are performed on the custom circle and triangle-shaped
RFID tags.

a finger even in the presence of noise. Thus, the single tag tracking algorithm

(Algorithm 1) in Rio can also be used to track touch/gesture with these cus-

tom tags.

4.5 RIO Evaluation

In this section, we evaluate Rio using the setup shown in Fig. 4.2a. We

show the performance of Rio with COTS tags, as well as custom-designed tags,

highlighting its robustness as a battery-free UI primitive. We also propose and

evaluate two proof-of-concept applications to demonstrate the utility of Rio.

The RFID setup operates as before, where the Impinj R420 reader

continuously queries the tags in range (at ⇠200 reads/second), and records

the RF phase of all RFID responses. We thus have a time series of phase

readings for each tag. The camera is time synchronized with the reader control
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software so that the video recording is time synchronized with the RF phase

measurements. This video footage is used to determine the tracking accuracy.

COTS Tag Layout. We demonstrate the swipe tracking accuracy of

Rio using the COTS tags. We use two di↵erent tag layouts: a single isolated

tag, and a multi-tag array, as shown in Fig. 4.9. This tag layout has two

parameters: Tag angle, and distance. Tag angle: Fig. 4.2a shows a setup

where the tags are placed flat on a surface, which is parallel to the plane of

the RFID reader antenna. We tilt the reader antenna by elevating one edge

of the antenna to vary the angle of the tag(s) w.r.t. the reader antenna. Tag

distance: We also elevate the entire tag(s) shown in Fig. 4.2a to vary the

distance of the tags to the reader antenna. Experiment results with di↵erent

tag angles and distances serve to demonstrate the performance of Rio under

real-world conditions when the tag is not perfectly aligned with the antenna.

Custom Tags. We also evaluate Rio on custom tags, as described

in §4.4. These custom tags are arranged 50cm away from and parallel to the

reader antenna’s surface.

Accuracy Measure. We use OpenCV [31] on the time-synchronized

video footage to visually track the finger during the swipe and touch gestures.

At any point in time, we compare the finger’s location as indicated by the Rio

to its actual finger position, as shown by the camera. The tracking accuracy of

Rio is reflected in the o↵set distance (in mm) between these two measurements

(Rio and camera).
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4.5.1 RIO with COTS Tags

4.5.1.1 Touch Detection

COTS Single Tag. For single-tag detection, we use the phase change

threshold C = 0.9 as described in §4.3.1.2. With this threshold, Rio achieves

perfect touch detection, even under varying tag angles (from 0 to 60°, w.r.t.

the reader antenna surface) and tag distances (up to 2.4m from the reader).

COTS Multi-Tag Array. Fig. 4.19 shows the detection accuracy

when we touch each tag in an array of eight tags. Observe that Rio correctly

detects the tag being touched more than 92% of the time. Touch events on tags

closer to either end of the array are even correctly detected 100% of the time.

Hence, Rio provides close to perfect tag detection under real-world conditions,

with RFID tags deployed in positions within an envisioned smart space. We

expect this accuracy to increase if multiple receive antennas, together with

spatial diversity processing (i.e., a multi-static setup) is used.

4.5.1.2 Touch Tracking

COTS Single Tag. Fig. 4.17 shows the tracking accuracy distribution

of a swipe gesture when the tags are parallel to and at a distance of 50cm from

the reader antenna. The swipe is performed at three di↵erent speed ranges:

slow (less than 10mm/s), medium (10 to 15mm/s) and fast (quicker than

15mm/s). A swipe at each speed range is repeated 100 times on each tag to

obtain this distribution. Recall that the DTW window of 0.5T to T is chosen

for swiping speeds of up to 15mm/s. Observe that the median location error
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Figure 4.17: Rio tracking accuracy with swipes of di↵erent speeds.

(a) Smartrac Monza R5 RFID tag
(Tag1).

(b) Smartrac Monza R6 G2IL RFID tag
(Tag2).

(c) Alien-9640, Higgs-3 short-dipole pa-
per tag (Tag3).

(d) Alien-9730, Higgs-4 short-dipole pa-
per tag (Tag4).

Figure 4.18: Rio is tested on four other tag types.

at medium speed over a single tag, as shown in Fig. 4.17a, is 3mm. Given

that the tag is 80mm in length, this median error is a mere 3.8% of the tag

length. The median error with slow and fast swipes is greater, at 7 and 8mm,

respectively, but is still within 10% of the tag length.

This good single tag performance is not limited to our specific RFID

tag. To demonstrate this fact, and we perform the medium-speed swipe gesture

over four other types of tags with di↵erent antenna designs and RFID chips,
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Figure 4.20: Swipe error distribution
for 4 other tags(Tag1, Tag2, Tag3,
Tag4).

as shown in Fig. 4.18. Fig. 4.20 shows that the median tracking error lies

between 3 and 6mm, less than 10% of the tag length.

COTS Multi-Tag Array. Fig. 4.17b shows the tracking error distri-

bution in an array of eight (8) tags. These results assume perfect touch detec-

tion accuracy. Observe that the results show similar behavior to the single-tag

case, where the medium speed swipe has this lowest median error of 7mm,

while the slow and fast speeds have median errors of 12 and 14mm. Hence,

even in the presence of mutual coupling e↵ects, Rio can localize the finger to

within 10% of the overall tag length. The experiments on both the single and

multi-tag arrays demonstrate that Rio can accurately track a finger’s location

during a swipe gesture.
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Figure 4.21: Tracking error distribu-
tion of custom tags.
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Figure 4.22: Tracking accuracy of
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from reader.
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4.5.2 RIO with Custom-Designed Tags

We evaluate Rio with four di↵erent types of custom tags: the circle

and triangle, as shown earlier in Fig. 4.15, along with a square and dipole that

are constructed with the same techniques. We place the smart tags 50cm away

from the reader antenna and perform a medium-speed swipe gesture. Fig. 4.21

shows the tracking accuracy distribution when a swipe performed on each of

these four custom tags. Observe that the median tracking error of all four tags

is less than 8mm, which is comparable to that obtained using COTS RFID

tags. Fig. 4.22 shows the localization error distribution when the custom tags

are placed at distances up to 1.5m away from the reader. Observe that even

at this distance, the median tracking error is no more than 15mm, or less than

19% of the tag length. Hence, Rio readily supports custom-designed RFID

tags that are purpose-built for specific smart spaces.

4.5.3 RIO is a Robust Touch-Sensing Primitive

4.5.3.1 Tracking Resolution vs Computation Overhead

Rio trades o↵ finger tracking resolution and computational overhead

through the number of segments, M , used for each location update (procedure

updateLocation in Algorithm 1) and Algorithm 3. ForRio, we run the data

processing and pattern recognition module at an Intel desktop with a 2.93GHz

Core i7 CPU and 16GB of memory, running Ubuntu 14.04 and JDK8.

Fig. 4.23 shows this trade-o↵ for several values of M . Observe that M

can be chosen to be as low as 50 with only a slight increase in median error
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(from 3 to 4mm) while achieving an almost 4⇥ reduction in computation time.

At this chosen level of accuracy, RIO has a touch location tracking response

time of one second. This computational overhead applies to both single and

multi-tag setups. We note that these latencies relates to motion tracking only.

A simple single-point touch-event can be detected within several milliseconds.

4.5.3.2 RIO on Large Multi-RFID Tag Arrays

We evaluate the performance of Rio-Multi with 30 RFID tags, using

the same experimental setup as that in §4.5. Fig 4.24 shows the tracking

accuracy distribution of Rio with and without RFID spatial filtering. Observe

that the median tracking error reduces from 14mm when no spatial filtering is

used, to 6mm when filtering is enabled. Due to a large number of tags, when

no filtering is used, there are time windows of T seconds when only a small

number of phase data is obtained from the tag being touched. This results in

reduced tracking accuracy. However, no such abnormalities are observed when

PHY-layer tag filtering is used.

4.5.3.3 Robust Tracking under Varying Tag Tilt Angles

Fig. 4.25 shows the tracking accuracy of a medium speed swipe when

the tags are placed at varying angles w.r.t. the plane of the RFID reader

antenna. Observe that in both the single and multi-tag array, Rio can track

the finger location with a tiny error (at 3 and 8mm, respectively) when the tag

is within 50°, of the reader antenna. This phenomenon happens because the
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(b) Multi-tag array.

Figure 4.25: Tracking accuracy with varying tilt angle of the tag with respect
to antenna.

RFID tags have linearly polarized directional antennas that focus the back-

scatter signals within a 120°, beam-width [28]. This result shows that battery-

free touch or gesture sensing is robust over a broad range of incident angles to

the RFID reader. As the tilt angle increases to greater than half the beam-

width and the reader antenna moves outside the beam edge of the RFID tag,

the tracking accuracy decreases. Note that changing the relative tilt angle of

the tag is analogous to the change of the relative angle of the RFID antenna,

and will thus yield similar accuracy results.

4.5.3.4 Robust Tracking at Varying Distances from Reader

Fig. 4.26 shows the tracking accuracy when a medium-speed swipe is

performed on a tag that is at varying distances from the RFID reader. Observe

that in the single tag case, a low error of no more than 8mm (10% error)

is achievable up to 2m from the reader. This occurrence demonstrates that
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Figure 4.26: Tracking accuracy with varying distance of the tag from the
reader antenna.

battery-free touch/swipe tracking is robust at varying distances from the reader.

However, if we change multiple factors simultaneously (e.g., reading angle, tag

tilt, blockage, etc.) or we change one of the impacting factors drastically (e.g.,

sudden increase of people in the room or introducing a new blockage between

the tag and the antenna), we need to re-calibrate RIO to create the reference

phase pattern to achieve mm-level accuracy.

4.5.4 Proof-of-Concept Applications

Rio is a touch sensing primitive for battery-free UI design. In this

section, we describe and evaluate two proof-of-concept UI applications that

are built using Rio.

Battery-Free Keyboard. A keyboard directly uses the touch-detection

capability of RIO in a multi-tag environment. We use Rio to develop an 8-

key musical keyboard (as shown in Fig. 4.27a), along with an accompanying
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(a) Keyboard with 8 buttons. (b) Numeric touchpad with digit “6”
traced (shown rotated 90°).

Figure 4.27: Example applications.

GUI. We can touch multiple keys simultaneously in this musical keyboard ap-

plication. Fig. 4.28a shows the false positive (tag is mistakenly detected as

being touched) and false negative (a touch event on a tag is missed). Observe

that our simple threshold-based touch detection algorithm achieves high accu-

racy in this battery-free key detection system, with a total false positive and

negative rates below 10%.

2D Numeric Touchpad. We have constructed a 2D numeric touch-

pad, as shown in Fig. 4.27b, using 7 COTS RFID tags. Each numeric digits

is formed by tracing its shape over the RFID tags. Fig. 4.27b illustrates the

outline of the number “6” (shown rotated 90°) traced on the touch-pad.

Fig. 4.28b shows the accuracy results when numbers 0 to 9 are drawn

on this touch-pad. Each number is repeated 50 times, and the false positive

and negative rates are reported here. Observe that all individual numbers can

be detected with total errors of less than 15%. This shows that RIO with

COTS tags can be used to design a general-purpose UI.
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Figure 4.28: False positive and negative rates for applications.

4.6 Points of Discussion

Naturally, there is much room for further work and possible improve-

ments. We discuss a few points here.

Cost of Rio system: Rio can support multiple tags simultaneously

for single-point touch tracking using a single antenna and single RFID reader.

Currently, this combined unit with one antenna, one RFID reader, costs ap-

proximately $1600. We expect that dedicated RFID sensing platforms built

upon lower-cost hardware (e.g., ThinkMagic reader hardware [36]), together

with low-cost o↵-the-shelf tags will eventually be available to consumers.

Comparison with touch-based sensing: Capacitive touch screens

[81] found in smartphones, tablets, laptops and the recently introduced Pix-

elSense [27] o↵er a readily-available multi-touch interface. However, smart

spaces demand low-cost, low-powered, flexible touch interfaces that can be

readily integrated into existing o↵-the-self items. Current capacitive touch
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screen technology cannot be easily and cost-e↵ectively integrated into our en-

visioned smart spaces. We note that Rio o↵ers a touch primitive to enable

smart spaces and does not replace capacitive touch technology in all appli-

cations. Rather, we expect that Rio will integrate with and extend existing

capacitive touch interfaces. For example, while Rio detects our direct in-

teractions with the environment, these interactions can be managed through

capacitive touch interfaces on our mobile devices.

Multi-touch tracking: Rio is basically a single touch-tracking sys-

tem and in the near future, we plan to extend it to multi-touch tracking

interface. This extension will broaden Rio’s potential use-cases. However, for

this, we have to model more complex mutual coupling phenomenon to provide

accurate impedance tracking.

Impact of di↵erent blockage scenarios: Although we have shown

in Fig. 4.5 that the phase pattern maintains its shape even in the presence

of obstacles like door or wall, the experiments are not exhaustive for di↵erent

static or dynamic blockage scenarios. In the near future, we plan to con-

duct more experiments in di↵erent types of blockage scenarios and di↵erent

environment conditions to better understand the performance of Rio.

69



Chapter 5

TIMU: RFID based Motion Sensing

Sports analytics is a billion-dollar industry [47]. Many companies and

startups are developing sports analytics for performance analysis, player fit-

ness, safety, valuation, fan engagement, and broadcast management [48, 46,

49, 50]. An essential input to sports analytics is the sensed motion. For ex-

ample, the rotation and translation movement speed and direction of a ball

can predict the ball trajectory and game outcome. Therefore, it is critical for

athletes, coaches, amateur players, and audiences.

Existing work: Recently there has been a surge of research interest in mo-

tion sensing. Many innovative sensing approaches have been proposed using a

variety of wireless signals, including WiFi (e.g., [162, 51, 173, 102, 195], acous-

tic (e.g., [129, 142, 203, 207, 120, 204, 186]), RFID (e.g., [185, 199, 183, 181,

179, 116]), 60 GHz (e.g., [187, 109]), and THz (e.g., [86]). Most of these

works focus on estimating distance and angle of arrival to track translation

movement.

Interestingly, rotation tracking is under-explored. On the other hand,

rotation plays a significant role in sports analytics, especially involving balls

(e.g., tennis, basketball, ping-pong, racketball, baseball, cricket). Moreover,
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existing device-free motion tracking systems, including WiFi, acoustic, and

laser, do not work well for tracking ball movement due to the small cross-

sectional area of the ball, limiting the amount of reflection and resulting in

significant error.

Rotation motion

Linear motion

Rotation Axis

Ball
RFID Tag

Linear
 Polarized 
Antenna

RFID
Reader

Figure 5.1: Architectural Overview of TIMU.

Gyroscope based approach is one way to sense rotational movement;

however, gyroscope gets saturated within a few revolutions per second [41].

To improve accuracy, [88] combines gyroscope with magnetometer and UWB

beacon with an antenna array to track a ball’s rotation. However, it requires

battery and significant modification to the ball [89]. Battery replacement is

not only costly but also inconvenient. Moreover, the gyroscope, magnetometer,

and UWB should be placed carefully inside a ball to track its rotation. This as-

pect significantly increases the manufacturing cost and the ball’s weight, which

may pose a problem to the players. Besides, it requires a way to communicate

the sensed motion from the ball back to the analytics system. Long-range,

high-resolution camera network is another option but su↵ers from occlusion
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and high cost ($100,000+) [88]. Moreover, it is not good at tracking fast

rotation (e.g., beyond 50 RPM) even with clear markers.

Tagyro [188] places multiple tags on an object and tracks the phase

change from each tag to estimate the 3D orientation of a static object using two

orthogonal RFID reader antennas. It models the phase change as a function

of the distance change. COTS RFID uses below 1 GHz frequency (over 30

cm wavelength), limiting the accuracy of the phase-based tracking. Therefore

[188] requires a static object with many widely separated tags (e.g., 8.2 cm),

multiple reader antennas, and extensive calibration, which is not suitable for

sports analytics.

Motivated by the existing works and their limitations, we seek to de-

velop a motion-sensing system using a commercial-o↵-the-shelf (COTS) reader,

antenna, and RFID tags. We attach RFID tags to a ball and use a commercial-

o↵-the-shelf (COTS) reader with a single antenna to sense both rotation and

translation movement, as shown in Figure 5.1. We build an end-to-end system

to integrate both rotation and translation tracking to handle general movement

involving both rotation and translation. We build a system, calledTIMU (Tag

Inertial Measurement Unit), which turns COTS RFID Tags into battery-free

IMUs. It measures motion parameters, including rotation axis, rotation speed,

3D position in a battery-free manner, while eliminating the need for an addi-

tional communication channel to report the tracked information.

We can use TIMU in di↵erent ball games, as shown in Fig. 5.2. For

example, in cricket or baseball, we can put the RFID antenna behind the
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batsman or the striker and attach the tags to the ball. In bowling or basketball,

we can put the antenna behind the pins or hoop for motion tracking.

Antenna

RFID Tag

Stumps

(a) Cricket.

Antenna

RFID Tag

Hoop

(b) Basketball.

Pitcher 
Strike Zone

RFID Tag

Antenna 
(Behind umpire)

(c) Baseball.

Bowling Pins

Antenna

Track

RFID Tag

(d) Bowling.

Figure 5.2: Possible sports applications of TIMU.

Our contribution can be summarized as follow:

• We develop a systematic model that captures the impact of polarization

between an RFID tag and a reader antenna on the phase and magnitude of

the received signal. It captures non-uniform gain between the RFID tags

and reader antenna.

• We design a novel algorithm that uses the polarization to estimate the

rotation axis and speed using a single RFID reader antenna. We extend
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our algorithm to estimate further AoA and distance using a single RFID

reader antenna. To the best of our knowledge, this is the first system

that senses general motion, including both rotation and translation using

a single RFID reader antenna.

• We implement and evaluate our approach and demonstrate its feasibility

in various scenarios, including environments with static or dynamic multi-

path.

5.1 Analytical Model for TIMU

In this section, we describe an analytical model that captures the im-

pact of the relative orientation of the RFID reader and tag on the received

signal due to polarization and other factors. We borrow from several liter-

atures to provide a comprehensive framework to understand the impact of

motion on the RFID phase and received signal strength (RSS).

5.1.1 Model of Received Signal Phase

We first examine how the movement a↵ects the phase of the received

signal. Consider the RFID setup in Figure 5.3. Let r denote the distance

between the reader antenna and tag. Therefore, the signal traverses a total

distance of 2r due to back-scattering. The received phase is not only deter-

mined by the distance, but also by the additional phase o↵sets introduced by

the transmitter, tag, and receiver circuits, denoted as ✓T , ✓TAG and ✓R, respec-

tively. The total phase change [35] observed by the reader can be expressed
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as:

ZC(ON)

ZC(OFF)

Tag

Rx

Tx

I
Q

Reader
Antenna

Tag 
Backscatter

Figure 5.3: RFID Reader/Tag Communication Diagram.

✓ = (
2⇡

�
⇥ 2r + ✓T + ✓TAG + ✓R ) mod 2⇡ (5.1.1)

where � is the wavelength. ✓T +✓R can be expressed as polarization mismatch

2�(r̂) or 2�.

5.1.2 Received Signal Strength

When both the reader antenna and the tag antenna are linearly polar-

ized, the polarization loss factor (⇢) can be expressed as ⇢ = cos2(�), where

� is the polarization mismatch between the two antennas. Therefore, for a

linearly polarized reader antenna and linearly polarized passive tag antenna

pair, Equation (2.6.2) becomes as follow:

Ptag = (
PtGt(✓t, �t)

4⇡r2
)(

Gtag(✓̂t, �̂t)cos2(�)�2

4⇡
) (5.1.2)
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Let Ptag denote the power impinged upon tag and Pchip denote the

amount of harvested power that is transferred to the RFID chip (IC). It can

be expressed as follow [62, 93]:

Pchip = KPtag (5.1.3)

where K is the modulation loss of the tag antenna (the value is less than 1)

and depends on the impedance matching between the chip and tag antenna.

Using the free-space Friis’ equation model in the reverse side, we get

the received power (Prec) as follows (similar to Eq. (5.1.2)):

Prec = (
PchipGtag(✓̂t, �̂t)

4⇡r2
)(

Gt(✓t, �t)cos2(�)�2

4⇡
) (5.1.4)

which becomes Eq. (5.1.5) by substituting Pchip in Eq. (5.1.4) by using Eq.

(5.1.2) and Eq. (5.1.3) :

Prec = PtGt(✓t, �t)
2Gtag(✓̂t, �̂t)

2Kcos4(�)(
�

4⇡r
)4 (5.1.5)

This indicates that

Prec / PtG
2
t
G2

tag
r�4Kcos4(�)

1

r4
(5.1.6)

To use our model, we need the gain values of the RFID tag and reader

antennas. For each position, we derive the gain values of the tag and reader

antennas based on their relative geometric positions according to their corre-

sponding datasheets. Fig. 5.4 shows their gain patterns, where the tag’s gain

pattern follows a cylindrical shape, and the reader antenna’s gain pattern has

a main lobe with two side lobes.
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Figure 5.4: Explanation of gain value sampling.

5.1.3 Model Validation

Measured vs. modeled phase and RSS: We compare the model with the

measurement from our RFID setup. Fig. 5.5 show the measured and modeled

phase during a rotation when the ball is rotating around the following four

di↵erent rotation axes: (0,0,30), (45, 0, 20), (0, 60, 60), and (45, 60, 5).

Figure 5.6 compares the measured and modeled RSS under the same rotation

axes. We make the following observations. First, di↵erent rotation axes tend

to have di↵erent phases and RSS patterns. This phenomenon suggests that it is

potentially feasible to use the phase and RSS patterns to estimate how the ball

rotates. Second, our modeled phase and RSS closely follow the measurement.

Therefore it is promising to use the modeled patterns to estimate the rotation

axis.
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Figure 5.5: Validation of Phase with di↵erent Rotation Axis Configurations
(Yaw, Pitch, Roll).

Modeling error: We further quantify the accuracy of our model by collecting

received signals over 200 di↵erent rotation axes at a 0.5m distance. We rotate

the balls at least 5 times and automatically detect the start and end of the

rotation. We align the measurement samples across di↵erent rotations using

correlation and compute the median across all rotations for each sample. We

compute the di↵erence between the samples from our measurement with those

from our model and compute the average per template pair. Fig. 5.7(a) and

(b) show the CDF of the modeling error for the phase and RSS, respectively.

As we can see, the median phase error is around 0.1 radian, and the median
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Figure 5.6: Validation of RSS with di↵erent Rotation Axis Configurations
(Yaw, Pitch, Roll).

RSS error is around 3 dBm.
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Figure 5.7: CDF of Modeling Error across 200 traces.
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Impact of multipath : We further evaluate the impact of multipath by col-

lecting additional measurements in two ways: one without intentionally adding

multipath and one with intentionally adding multipath by placing 5 wooden

reflectors (1m ⇥ 1m large and 1cm thick) wrapped with aluminum foil near

As we can see, the modeled RSS and phase match well with the measurement.

The match is close even under the multipath scenarios because linearly polar-

ized tag and reader antenna significantly weaken the signals coming in other

directions and limit multipath.

Furthermore, we create dynamic multipath situations: (i) by moving a

wooden barrier (1 m ⇥ 1m large, 5 cm thick) around intermittently blocking

the direct path between the tag and antenna, and (ii) by moving the wood

around without blocking the direct path between the tag and the antenna.

Fig. 5.8(c) and Fig. 5.8(d) shows that although there is distortion in the pattern

in the blocking scenario, the overall shapes remain similar.

5.2 Tracking Algorithm

To track a ball, we attach multiple RFID tags to the ball. We develop

a tracking algorithm to estimate its translation and rotation movement incre-

mentally. First, we consider the ball’s position is fixed and known, and design

an algorithm to estimate its rotation axis and speed. Then we relax the as-

sumption and estimate the ball’s position in addition to its rotation axis and

speed.

We use the setup shown in Fig. 5.9. We calculate the rotation axis
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(b) RSS under static multipath.
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(c) Phase under dynamic multipath.
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(d) RSS under dynamic multipath.

Figure 5.8: Measured vs. modeled phase and RSS under static and dynamic
multipath when the ball rotates along the axis (70,30,15).

angles with respect to the ball’s coordinate system. We set the center of the

RFID antenna as the origin. We transform the ball coordinate using proper

rotation matrix multiplication and translation transformation. The azimuth

defines the horizontal angle between the ball and reader antenna, and the

elevation defines the vertical angle between the ball and reader antenna. We

choose linear polarized reader and tag antennas (i.e., the electric magnetic field

is confined to a plane as shown in Fig. 5.9) since it results in deterministic

and distinguishable phase and RSS patterns during rotation. Furthermore,

as shown in Fig. 5.9, we place multiple tags with di↵erent orientations with
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Figure 5.9: Polarization and co-ordinate Systems of TIMU.

respect to the polarization plane of the RFID reader antenna to maximize

diversity and improve accuracy. We avoid 90 degree angles between the tag

orientation and reader antenna’s polarization plane since it would result in the

minimum received signal.

5.2.1 Estimate Rotation Axis and Speed

In this section, we assume the ball’s position is fixed and known, and

estimate the rotation axis, speed, and direction.
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5.2.1.1 Estimate Rotation Axis

First, we consider how to estimate the rotation axis. We observe di↵er-

ent rotation axes result in di↵erent RSS and phase patterns during a rotation.

Therefore we can use the RSS and phase measurements from a rotation to

infer the rotation axis. In particular, we leverage the model in Section 5.1 to

facilitate our estimation.

Problem formulation: Our goal is to search for the rotation axis (✓1, ✓2, ✓3)

such that the resulting received signals best matches the measured signals. We

can detect the start and end of a rotation based on the periodic RSS pattern,

as described in Sec. 5.2.1.2. Let ri
k
denote the i-th measured received signal

from tag k during one rotation, N denote the total number of samples we get

from each tag in one rotation, and M denote the total number of tags.

Given the ball size, position, rotation axis, and the number of samples

per rotation, we can derive the tag trajectory during a rotation based on

geometry. We uniformly sample the trajectory so that we generate the same

number of samples like the one from the measurement. For each position on

the trajectory, we compute its phase and RSS as described in Section 5.1 to

get a complex signal. Let mi

k
(✓1, ✓2, ✓3) denote the i-th received complex signal

from tag k during the rotation estimated using our model when the rotation

axis is (✓1, ✓2, ✓3).

Our goal is to search for the rotation axis that minimizes the fitting
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error with the measured signals across all tags. That is:

min✓1,✓2,✓3

X

k

|mi

k
(✓1, ✓2, ✓3)� ri

k
| (5.2.1)

Signal alignment: This formulation assumes the modeled and measured

signals are correctly synchronized. This synchronization is achieved by com-

puting the correlation between the two signals at all o↵sets and finding the

o↵set that yields a peak in the correlation.

Algorithm: The problem is challenging to solve since the objective is non-

linear and has many local optimal. One option is to perform a binary search

or a hierarchical search. However, it does not work well since a local optimal

may be surrounded by points that are far from optimal. Another option is to

generate profiles for all possible rotation axes at a given granularity using our

model and exhaustively compare the measurement against all profiles from our

model. This operation is expensive. If we resort to a coarse search resolution

to speed up the search, the accuracy will degrade. Instead, we use non-linear

optimization (e.g., fmincons() in MatLab). We find the optimization results

are sensitive to the initialization. In order to get a good solution, we need an

initial solution that is not too far away from the optimal. This phenomenon

is not surprising since when the search space is large, random initialization is

not e↵ective. Therefore, a good initial solution is important not only for speed

but also for the high quality of the solution.

To improve the speed and quality of the search, we develop two strate-

gies. First, we use a machine-learning algorithm to find an initial solution. We
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Figure 5.10: Empirical Parameter Selection of a fully-connected DNN for ini-
tialization.

use a deep neural network (DNN) as the machine learning algorithm. The ad-

vantage of using a DNN is that it can approximate any function with arbitrary

accuracy. We use a fully connected 4-layer DNN, which has 600, 500, 400, and

300 neurons at the first, second, third, and fourth layers, respectively. The

DNN maps the phase and RSS samples during one rotation to the 3D rotation

axis. Following the common practice, we normalize the inputs using ‘ReLu’

transfer function for hidden layers and end with a single unit and a ‘sigmoid’

activation. The neural network is trained using Adam optimizer, the learning

rate of 0.0000001, and the maximum iterations of 100000. We generate the

training data using a combination of measurement data and synthetic data de-

rived from our model. Our results show that the initial solution derived from

the DNN significantly improves the solution quality and search speed. Be-

fore arriving at this specific architecture, we have empirically evaluated with
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other configurations. Fig. 5.10 shows the average error reduces initially as we

increase the number of layers from 3 to 5, and then tapers o↵ as we further

increase the number of layers.

Moreover, we observe that searching a rotation axis for each rotation

independently is sub-optimal since it ignores the strong temporal correlation

between consecutive rotations. To take into account the temporal locality, for

each rotation, we generate multiple initial solutions by injecting a small ran-

dom noise to the output from DNNs and feed each of the perturbed solutions

to fmincons in Matlab. In this way, we obtain L candidate solutions for each

rotation. We select the candidate solution from each rotation to minimize the

total di↵erence between the consecutive rotation axes to capture the temporal

locality. To achieve this goal, we construct a graph with L⇥R nodes (L nodes

per rotation and R rotations). We fully connect the nodes in rotation i with

those in rotation i + 1 with edge weights representing the Euclidean distance

between their corresponding rotation axes. We find the shortest path in the

graph. The solutions corresponding to the nodes on the shortest path are the

final rotation axes. Our evaluation shows that L = 5 and R = 3 give the right

balance between the computation cost and accuracy.

Figure 5.11 shows the CDF of estimation errors using random initial-

ization, DNN, and DNN with the temporal locality. As we can see, the median

error decreases from 32.5 degrees in random initialization to 9 degrees in DNN

and 5 degrees in DNN with the temporal locality. Furthermore, to observe the

dependence of data collection setup in our DNN initialization, we collected
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Figure 5.11: CDF of Error using di↵erent initialization.

rotation axes data in two di↵erent locations while using one for training and

others for estimating and vice versa. If we use data from the same location

compared to di↵erent locations in training and estimating for our DNN ini-

tialization, the median error for angular estimation goes from 5.5 degree to

7.5 degree. The error is not significant because the pattern templates remain

similar for a particular rotation axis due to the polarization property.

Multiple tags: This optimization can support multiple tags by summing up

the fitting error across all tags. This aspect helps to avoid the zones that

have similar rotation templates and thus yielding more error. To balance the

computation cost and accuracy, we use 3 tags. Fig. 5.13 shows that using

three tags can reduce the median estimation error of the rotation axis from 15

degree to 5 degree.

We use a Macbook Pro running OS Sierra with a 8GB RAM and i5
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Figure 5.12: CDF of Error using training and testing in data collected from
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Figure 5.13: CDF of rotation axis error using 1 or 3 tags.

quad-core processor to process the data. It takes around 0.5 second to run

the DNN based initialization and, on an average, 1.5 seconds to estimate the

parameters of rotation with other related values.
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5.2.1.2 Estimate Rotation Speed

As shown in Figure 5.14, the received signal strength (RSS) exhibits

a periodic pattern as the ball is rotating. The RSS reaches a peak when the

tag is parallel to the reader antenna (e.g., their angles are at 0o, 180o, 360o,

and so on). The RSS reaches a valley when the tag and reader antenna are

perpendicular to each other. Therefore, by counting the number of peaks, we

can estimate the number of rotations per minute (RPM).
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Figure 5.14: Example of RSS during two complete rotations at a 0.5m distance.

5.2.1.3 Estimate Rotation Direction

Rotation can happen clock-wise or counter-clockwise. For a given ball

rotation axis and position, these opposite rotations produce reverse templates

as shown in Fig. 5.15. Therefore, by analyzing the template pattern, we can

infer the rotation direction.
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Figure 5.15: Rotation Clock-wise or Reverse Clock-wise.

5.2.2 Estimate Ball Position Using a Single Antenna

In this section, we focus on estimating the ball position using a single

antenna (i.e., the angle of arrival (AoA) and the distance from the ball). Our

AoA estimation requires the ball to rotate, whereas the distance tracking as-

sumes the translation movement dominates the phase change. We will further

integrate rotation and translation tracking in Section 5.2.3.

5.2.2.1 Estimate AoA

Our algorithm: Existing approaches use an antenna array to estimate the

angle of arrival (AoA). We explore the feasibility of using a single RFID reader

antenna to estimate the AoA by exploiting the polarization and non-uniform

gains of the reader antenna and tag. We observe that AoA a↵ects the phase

and RSS pattern during one rotation; therefore, it may be possible to use the

phase and RSS measurements in a rotation to infer the AoA along with the

rotation axis. We apply the same optimization framework in Section 5.2.1 ex-
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cept that we now add two new unknowns: azimuth and elevation. To improve

the search for the rotation axis and AoA, we use another DNN with the same

structure as in Section 5.2.1 except that it has a 5-dimension output vector,

which includes the rotation axis, azimuth, and elevation. As before, we find

DNN based initialization works much better than random initialization since

it uses the RSS and phase patterns to determine a good starting point.

Addressing symmetric issue: Another issue remains: the impact of AoA

on the phase and RSS is symmetric. For example, the AoA of 30 degrees to the

left has the same e↵ect on the RSS and phase as 30 degrees to the right. To

disambiguate the left versus right, we use the scheme as illustrated in Fig. 5.16,

where we attach two tags in parallel to the ball. As shown in Fig. 5.16, the

outer tag has a larger distance and smaller azimuth when the ball is on the right

side and vice versa when the ball is on the left side. We estimate the absolute

distance of the tags using our two-frequency based method as described in

Section 5.2.2. We apply the above rule to determine whether the ball is on the

left or right side to the reader antenna. Our evaluation does not distinguish the

elevation since we assume the target has a positive elevation angle. However,

in principle, we can apply a similar approach to distinguish whether the tag

is above or below the reader antenna.

5.2.2.2 Estimate Distance

We use the phase of the received signal to estimate the distance based

on Equation 2.4. According to the previous phase model, ✓ = 2⇡
�
⇥ 2r +
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Figure 5.16: Distinguishing between the left and right.

2� + C. So we estimate the change in the distance r based on the change

in the phase ✓. However, due to the phase wrap-around, it only gives the

relative distance change. In order to estimate the absolute distance, we use

multiple frequencies since they significantly increase the wrap-around period

due to Chinese Remainder Theorem [189], which states that solution is unique

modulo to Least Common Multiple (LCM) of �1, �2, ..., �n (which is much

larger than a single frequency), where n is the number of frequencies. We use

two frequencies: 865.7MHz and 867.5MHz, which yields a wraparound period

of around 250 ns. This value corresponds to around 75 m one way, which

is large enough to avoid ambiguity in our context. There is a random phase

o↵set at the reader antenna. To remove the random o↵set, following [147],
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we attach an auxiliary tag to the RFID antenna and compute the di↵erence

between the phase obtained from the target tag and auxiliary tag. We use the

phase di↵erence between the two for distance estimation.

In practice, the commercial RFID reader can only transmit on one

frequency at a time. So it performs frequency hopping and uses the two closest

samples collected from the two frequencies to derive the absolute distance. The

only di↵erence is that we should compensate for the phase change arising from

the samples collected at di↵erent times. Since we can easily derive the phase

change between the previous two samples, we can use it to compensate for the

phase change due to di↵erent sampling times.

5.2.3 Supporting Simultaneous Rotation and Translation

Next, we study how to estimate both rotation and translation move-

ment at the same time. Fig. 5.17 shows an example phase pattern when a ball

has both translation and rotation movement. We observe that the total phase

change is the sum of the phase change due to rotation and due to translation

movement. Therefore, to estimate the rotation axis, we should remove the

impact of the translation movement on the phase change.

Based on the above observation, we integrate our rotation estimation in

Section 5.2.1 with our translation motion estimation in Section 5.2.2 to support

both translation and rotation movement. Algorithm 4 shows the pseudo-code.

Steps 1, 2, 5, and 6 are described in Section 5.2.1 and Steps 3 and 7 are

described in Section 5.2.2. In step 4, we compensate the phase change from
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Figure 5.17: Example Phase Pattern of a Highly Rotating Moving Ball with
Slow Linear Speed.

the translation movement by adjusting the phase of the i-th sample during a

rotation by the ��✓ ⇥ i/N , where N is the number of samples in a rotation

and �✓ is the phase change during one rotation, which is caused only by

the translation movement since a complete rotation at a fixed position should

not change the phase. This assumes constant translation movement during a

rotation, which is likely to hold in practice since velocity tends to remain the

same during a small time interval.

5.3 Evaluation

In this section, we first describe our evaluation setup and then present

the evaluation results.
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Algorithm 4 Final algorithm
1: Estimate the rotation speed based on RSS (Section 5.2.1.2)
2: Estimate the start and end time of each rotation as the consecutive RSS

peaks (Section 5.2.1.2)
3: Estimate the distance change and direction during each rotation based on

the phase change of the received signal (Section 5.2.2.2)
4: Compensate the phase change caused by the translation movement
5: Use the phase and RSS time series from each rotation after compensation

to estimate the rotation axis, direction and AoA for the rotation (Sec-
tion 5.2.1.1)

6: Estimate rotation direction (Section 5.2.1.3)
7: Estimate AoA (Section 5.2.2.1)
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3D Printed ball Holder

Ball

Reader Motor Driver

Guide Driver

Motor Power

Guide Power

ArduinoGuide 
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Nema 34 Motor

Linear Guide

Laptop (Central Controller)

Tag

Figure 5.18: Experimental Setup of TIMU.

5.3.1 Evaluation Setup

To perform controlled movement experiments and quantify the accu-

racy of our tracking algorithm, we build a setup that allows us to control the
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rotation axis, rotation speed, translation speed, and direction, as shown in

Figure 5.18. To collect the ground truth, we use a moving track [42] whose

movement can be programmed and controlled via a laptop using USB. The

track is 2.5m long and supports a moving speed from 1cm/s to 3m/s. To drive

the motion guide, we use an AMC430 controller [44], a motor driver, and a

dedicated power source. Furthermore, to support di↵erent rotational axis con-

figurations, we 3D print a Goniometer [40], as shown in Fig. 5.19. We place an

RFID tag on the ball placed above the Goniometer, as shown in Fig. 5.20. To

create rotational motion, we use Nema 34 motor [45] with a motor driver and

power source [37]. This rotation motion is controlled by arduino [39], which in

turn connected to the laptop. We vary the translation movement from 1cm/s

to 3m/s and rotation speed from 1rpm to 400rpm. Unless otherwise specified,

we use a 6cm radius rubber ball in our experiments, as shown in Fig. 5.20.

The default translation speed, rotation speed, azimuth, elevation, Yaw, Pitch,

and Roll values are 10 cm/s, 60 RPM, 20 degrees, 20 degrees, 0 degree, 0

degree, and 45 degree respectively. We further vary each of these parameters

to understand its impact.

We use a commodity Impinj RFID reader R420 [25] (which is ETSI-

compliant). It can support frequencies from 865.7MHz to 867.5MHz. We use a

9dBi linearly polarized (RHCP) RFID antenna to leverage its polarization for

motion tracking [43], and it is connected to one of the RF port of the reader.

The antenna hops between these two frequencies for absolute distance estima-

tion. We use the highest allowable transmission power setting of 32.5dBm.
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We use Alien Squiggle RFID clear wet inlay (ALN-9740) tags [38], which are

tuned to work in 840 MHz to 960 Mhz (Global) for our experimental purposes.

We can read these tags with our linearly polarized antenna from up to 10m

in line-of-sight setting and up to 6m in a non-line-of-sight setting. We can

achieve a sampling rate of around 200Hz for a single tag and around 50 Hz

for three tags in our setup. For 3 tags, we put two tags in parallel 90 de-

gree apart and another tag on the other side in an orthogonal orientation to

this tag-pair. The reader interrogates tags using a Low-level Reader Protocol

(LLRP) approved by EPCGlobal. It sends query reports containing infor-

mation of ID, RSS, Phase, time-stamp, and channel, via Ethernet to a host

laptop. We implement TIMU using RFID library and processing algorithms

implemented in python and MATLAB. In all the following experiments, unless

otherwise specified, we report the performance of 5 runs for each configuration

using errorbars or CDFs. The center of the error-bar is the median, and its

two ends correspond to 25-percentile and 75-percentile. We perform all of the

experiments in a typical lab with several furniture (e.g., tables, chairs, desks,

shelves) and desktops nearby. To reduce noise in the data, we follow [188] to

post-process the phase and RSS measurements by computing the median over

a sliding window of 20 samples.

5.3.2 Evaluation Results

We evaluate each component of our motion tracking algorithm. We

change one dimension at a time to quantify the tracking accuracy of the ro-
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Figure 5.19: Rotation Setup for TIMU.
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Figure 5.20: Magnified view of rotation Setup.

tation axis, rotation speed, distance, and AoA estimation. We then evaluate

our algorithm under general motion involving both rotation and translation

movement.

5.3.2.1 Estimate Rotation

First, we track rotation movement without translation motion. We fix

the rotation axis in this experiment and put the ball in a static position. We
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estimate the number of rotations per minute (RPM). For example, Fig. 5.21

shows the RSS patterns of di↵erent rotation speed (at 30RPM and 60RPM)

at a fixed rotation axis.
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Figure 5.21: Example RSS patterns at Di↵erent RPM.

Estimating rotation speed: We use the periodic RSS change to estimate

the rotation speed. Figure 5.22 plots the rotation speed estimation error as we

vary the RPM, distance, rotation axis, and Angle-of-arrival (AoA) (azimuth

in this case). As we can see, in all cases, we can accurately estimate the

rotation speed. Fig. 5.22(a) because all errors in this case are 0. Overall, the

error increases with the speed and distance we would expect due to false peak

detection.Using the average of 3 tags reduces the RPM error by 20� 25% due

to redundancy.

Estimating rotation axis: Next, we evaluate the rotation axis estimation
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(a) Vary RPM (b) Vary distance

(c) Vary rotation axis (d) Vary AoA

Figure 5.22: Rotation Speed vs RPM error.

(i.e., the relative angle with each of the axes: Yaw (X), Pitch(Y), and Roll(Z)).

Figure 5.23(a) plots the error in estimating the rotation axis as we vary the

rotation speed. In this experiment, we create 36 possible configurations by

changing X, Y , Z angles using a Goniometer. As we can see, the rotation axis

errors are similar as we vary the rotation speed. Figure 5.23(a) shows that

the errors in the three axes are around 5 degrees in all cases. Figure 5.23(b)

shows that the error increases with the distance due to reduced received signal

strength (RSS) resolution. Next, we separately vary the azimuth from 20 to

160 degree (20 degree apart), vary the elevation from 10 degree to 70 degree

(20 degree apart), and their combinations to generate di↵erent 3D positions.
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As shown in Figure 5.23(c), the median error is around 5 degrees when we vary

only the azimuth or elevation axis. When we vary both, the error increases to

6 degrees.

(a) Vary speed (1m) (b) Vary distance (80 RPM)

(c) Vary AoA (1m, 80 RPM)

Figure 5.23: Rotation axis error along di↵erent axis with 36 possible configu-
rations.

5.3.2.2 Estimation Translation Distance

Next, we consider the translation movement without rotation. Fig-

ure 5.24 compares the relative distance change error when we move the ball

on the guide with translation movement at di↵erent speeds. We calculate the

relative distance change using the phase change in one frequency. Fig. 5.24(a)
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shows the CDF of the distance estimation error as we vary the speed. It shows

that the error tends to increase with speed. Nevertheless, even at high speed

(e.g., over 0.5 m/s), the 90-percentile error is within 2 cm over a 2.5m travel

range. Next, we change the azimuth from 20 degree to 150 degree while setting

the ball speed at 10 cm/s. Fig. 5.24(b) shows the impact of azimuth on the

distance estimation error is small.
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Figure 5.24: Relative Distance Error using 1 Frequency.

Next, we use two frequencies to estimate the absolute distance. Fig-

ure 5.25(a) compares the absolute distance error when the ball is stationary,

and shows that even at di↵erent distances (up to 2m), the 90 percentile error is

within 1.5 cm. Note that the data collection duration needs to be longer than

the time required to get measurements from di↵erent frequencies for absolute

distance estimation. Figure 5.25(b) compares the absolute distance error when

the ball is moving at di↵erent speeds. As we can see, the 90 percentile distance

estimation error is within 2.5cm.
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Figure 5.25: Distance Estimation Error using 2 Frequencies.

5.3.2.3 Estimating Azimuth and Elevation

Next, we estimate the azimuth (i.e., the relative 2D angle with the

antenna) and elevation (i.e., the relative angle with the orthogonal plane),

while keeping the other parameters the same. We change the azimuth from

20 to 160 degree (20 degree apart) and change the elevation 10 degree to 70

degree (20 degree apart), which cover 32 possible configurations. Fig. 5.26(a)

shows that the azimuth estimation error is within 6 degree up to 2 m away

when we change either the azimuth or elevation. Fig. 5.26(b) shows that when

we change the azimuth and elevation together, our tracking achieves within

6.5 degree error at 1 m away. Fig. 5.26(c) and Fig. 5.26(d) show that both

90-percentile azimuth and elevation errors remain within 8 degree even if we

vary the rotation speed at a 1m distance, validating the e↵ectiveness of our

algorithm for AoA tracking under di↵erent scenarios. As before, increasing

distance and speed increases the error due to lower SNR and fewer samples

during a rotation.
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Figure 5.26: Azimuth & Elevation Error.

5.3.2.4 Estimate Moving Direction

To estimate the rotation direction, we change the rotation direction

from 1m away by changing the azimuth from 20 to 160 degree (20 degree

apart) with 6 di↵erent rotation axes. Using the same set of configurations, we

move the ball from 2m distance toward and away from the RFID antenna to

estimate the translation. As shown in Fig. 5.27(a), we can estimate the direc-

tion of translation movement with almost 100% accuracy at di↵erent speeds.

Moreover, Fig. 5.27(b) shows that we can estimate the rotation direction accu-

rately over 95% cases at a high rotation speed. We miss some of the cases due
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to fewer samples and smaller change during a rotation in some configurations.

(a) Translation Direction (b) Rotation Direction

Figure 5.27: Moving Direction Estimation.

5.3.2.5 Rotation and Translation Movement

We change the rotation speed from 5 RPM to 100 RPM and the trans-

lation movement speed from 1 cm/s to 100 cm/s. By varying the azimuth from

20 to 160 degrees in 10 degrees apart and the elevation from 10 to 70 degrees

in 10 degrees apart, and the rotation axes, we generate 64 possible rotation

axis configurations. As shown in Fig. 5.28(a), when both the rotation and

translation speeds are small, the 90 percentile error is within 2cm; when both

speeds increase, this error increases up to 6.5cm. Fig. 5.28(b) shows the 90

percentile RPM errors are around 2 and 4 for these two scenarios, respectively.

Fig. 5.29 shows CDFs of the azimuth and elevation estimation error for

a similar setup. As it shows, the 90 percentile estimation errors increase to 6

and 7.5 degree, respectively.

Furthermore, Fig. 5.30(a) shows the estimation error of di↵erent axes
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Figure 5.28: Error in Rotation & Translation Speed Estimation.
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Figure 5.29: Error in Azimuth & Elevation Estimation.

at di↵erent rotation and translation speeds. The median error of rotation axis

estimation is within 5 degree and the 90 percentile error is within 7.5 degree.

Fig. 5.30(b) further compares the estimation error using our received signal

model versus a simpler model that only considers the impact of the distance

as in Tagyro [188]. As we can see, our algorithm yields much lower error: the

median errors is within 5 degrees in our case versus 40 degrees in the other

case.

Impact of blockage and multipath : We create a blockage by putting a
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Figure 5.30: Error in Rotation Axis Estimation.

(a) LoS and NLoS (created via putting
blockage before antenna) settings.

(b) Di↵erent configurations created by
introducing 5 wooden (aluminium foil
wrapped) reflectors.

Figure 5.31: Performance in Non-line-of-sight (NLoS) setting and di↵erent
static multipath setting.

wooden barrier (1 m ⇥ 1m large, 5 cm thick) in front of the reader antenna.

We perform a subset of the previous experiments involving both rotation and

translation. Fig. 5.31(a) shows that error increases within 10%. Blockage

does not significantly increase the error since the RFID signal can penetrate

through the obstacle.

Next, we introduce static multipath by placing 5 wooden reflectors
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(a) Dynamic Multi-path situation is
created when a user moves around im-
pacting the direct and indirect paths.

(b) Di↵erent Environments introducing
di↵erent Multi-path related e↵ect.

Figure 5.32: Environment 1 and Environment 2 di↵er in relative locations of
the furniture and desktops in the lab.

wrapped with aluminum foil in the same way as the multipath experiments

in Section 5.1.3. As shown in Fig. 5.31(b), the rotation axis and relative

angle error are within 8 degree in both configurations. Moreover, the distance

estimation and rotation speed estimation error remain small: within 3cm and

4 RPM, respectively.

To further evaluate the impact of multipath, we create dynamic multi-

path by moving the same wood barrier randomly between the tag and reader

antenna (blocking) or near the tag and reader antenna (non-blocking). As

shown in Fig. 5.32(a), the errors under dynamic multipath with and without

blocking are 20% and 8-10% higher than in the typical setting (i.e., LoS with-

out dynamic multipath), respectively. Dynamic multipath increase errors in

both cases. Blocking has higher errors due to reduced RSS. Nevertheless, the

errors in both cases are low since the general trends under dynamic multipath

remain similar, as shown in Fig. 5.8(c) and (d) (in Section 5.1.3).
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We further evaluate the performance in two locations – a lab and a

conference room when the calibration is performed in the lab. Fig. 5.32(b)

shows that the errors are similar, which indicates the scheme is reasonably

robust to the environment change.
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Chapter 6

RTSense: RFID based Temperature Sensing

In this chapter, we propose and develop a passive RFID tag-based

temperature sensing method called RTSense.

6.1 Overview

Accurate temperature information inside the buildings is essential, as

people spend most (around 90 percent) of their time indoors [12]. Furthermore,

there is also significant variation in temperature across a large building or even

within a spacious room, which we also confirm using empirical measurement

(as illustrated in Fig. 6.2). Fine-grained real-time knowledge of indoor tem-

perature empower the future smart-spaces by enabling personalized thermal

comfort systems for the occupants to promote their well-being [131, 96, 20, 92].

Furthermore, it can potentially be used to monitor the heating, ventilation, and

air conditioning (HVAC) systems.

Inspired by this tag-antenna based sensing and due to the growing

popularity of low-cost passive RFID tags, we explore the possibility of using

passive RFID tags as temperature sensors. We observe, like [65], that tem-

perature change can result in variation in the impedance of the RFID tag, and
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Figure 6.1: Building floor map and di↵erent temperature measurement sites.
The box symbols denote the floor-level measurement locations and the cross
symbols denote the room-level locations.
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(b) Room Variation.

Figure 6.2: Temperature measurement variation across di↵erent locations and
within the room. The temperature variation can go up to 9 degrees. The
ambient temperature snapshots are taken in the 11 a.m. and 5 p.m. Non-
uniform indoor temperature illustrates that ubiquitous temperature sensing is
crucial to achieving indoor thermal comfort.

such a change can be captured using the phase of the received signal reflected

by the RFID tag (like [68] with customized tags). Based on this relation, one

can potentially map the phase change back to the temperature change. While

intuitive, making it work well in practice involves several challenges: (i) how to
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achieve high accuracy, (ii) how to be robust against the environmental change

(since phase can change not only with the temperature but also with the envi-

ronment and movement), and (iii) how not to decrease the sensing range [135].

These challenges are side-stepped in the previous tag-antenna based sensing

works [64, 65, 68]. Closest to our work is [178], which although takes into

account environmental impact in design while using Commercial O↵-the-Shelf

(COTS) setup, but su↵ers from lower sensing resolution and range due to the

use of power-based metric [138, 135].

Bigger Surface 
Area Tag

Smaller Surface 
Area Tag

Tag Chips

Figure 6.3: Tag-pair of RTSense.

To address (i), we develop an analytical model that captures the im-

pact of temperature change on the reflected signal phase. The model helps

us gain insight that larger antenna surface area results in more impedance

change, which can be exploited in di↵erential sensing. This approach opens

up the possibility of achieving better resolution by exploiting the antenna sur-

face. To address (ii), we use a pair of tags that respond di↵erently to the
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temperature and measure the phase di↵erence between the two tags. The

use of two tags allows us to cancel out the impact of environmental changes

since both tags experience the same environmental change. Using these ob-

servations, we build the tag-pair by attaching RFID chip transponders to the

dipole antennas, as shown in Fig. 6.3. This area-based tag-pair design helps

us to develop an environment independent way of sensing room temperature,

which in turn circumvents the problem of sensing range reduction (issue (iii)).

Before arriving into the final design, we experiment with a variety of RFID

setups for temperature sensing. We converge to a simple commercial RFID

tag coupled with a custom-designed copper dipole antenna-based temperature

sensor through experiments. Thus, we build a system called RTSense (RFID-

based T emperature Sensing) using this tag-pair, which can be easily deployed

in the walls of current buildings or future smart-spaces. We also use a spe-

cific phase-di↵erence based metric to increase the robustness of the system.

Fig. 6.4 illustrates the outline design of RTSense, which can facilitate the

construction of a room-level thermal map of any building and help improve

occupants’ indoor thermal comfort.

6.2 Model-aided Design of RTSense

In this section, we will describe the underlying model of the impact

of ambient temperature on phase manifestation and how this model helps

create a phase-based metric for RTSense to predict the temperature in an

environment-agnostic way. We will first describe di↵erent components of the
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Figure 6.4: Design of RTSense.

analytical model by providing a brief context and then end with the phase-

based metric used in RTSense.

6.2.1 Context

In RTSense, to simplify the antenna specific artifacts, we design and

build the simplest possible antenna element, i.e., dipole antenna, which is also

a popular commercial RFID tag design [153, 79, 66]. According to [122, 136],

the basic design guideline for any chipped RFID tag antenna is size reduction

without sacrificing the conjugate matching [64, 122]. The key idea in our work

is to relax this requirement of size reduction, as our use-case of temperature

sensing inside buildings does not necessarily require that. Secondly, we use the

variation of wireless parameter (more specifically phase) due to the impedance

change in the passive antenna elements due to ambient temperature change.

There are many previous works [64, 66, 138, 118], which reported this insight
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Figure 6.5: Possible configurations of a RFID tag antenna.

and exploited this feature for sensing purposes. Unlike these works, we present

an analytical model (rather than a data-driven approach) and incorporate that

insight into our antenna design process by exploiting the antenna surface area.

In the following, we first present the main components of analytical modeling.
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6.2.2 Mapping Temperature to Impedance

In RTSense, we are employing tag-antenna based sensing and utiliz-

ing the manifestation of impedance change in the tag-antenna caused by the

temperature variation. Therefore, we need to validate the impedance change

modeling part. For achieving this, we need to know di↵erent electromagnetic

components of a tag-dipole antenna, the configuration among these compo-

nents, and the impact of temperature on these.

6.2.2.1 Components of antenna

As we have chosen the simplest possible dipole antenna design (other

sophisticated antenna design varieties are left for future work), we first have to

find the resistive, inductive, and capacitive components. Assume that, simple

dipole antenna has a specific length (l), width (w), and thickness (t), and the

frequency of the RFID continuous wave is given by f and the wave-length is

�. According to [171], the inductance (L) of this type antenna strip is

L[nH] = 0.2l[mm][ln(
2l

w + t
) + 0.5 +

w + t

3l
] (6.2.1)

Furthermore, resistance (R) has two components: AC resistance (which hap-

pens due to inductive coupling) and real DC resistance (which is the intrinsic

characteristic of the metal strip). The DC resistance of this type of strip can

be given by ⇢l/wt (where ⇢ is the resistivity constant depending upon metal,

and for copper, the value is 1.68 ⇥ 10�8) and the AC resistance is given by

80↵2(⇡l
�
)2 [66, 60] (Here, ↵ is the term dependent upon the current distri-

bution along the dipole). This AC resistance depends upon the skin-depth,
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which increases with frequency [66, 144]. Suppose the current distribution is

triangular (i.e., maximum at the center and zero at the ends), then ↵ = 0.5

(we assume that). This phenomenon can only happen if the length of the

dipole is �/2, and we build our dipole taking into the frequency of operation.

Furthermore, the capacitance (C) of the metal strip is given by C = wt✏/d,

where d is the distance between two dipole antenna halves. We get these initial

components (R, L, and C) using these analytical models, and verify both with

Ansys HFSS software [1] and LCR meter [10] (the analytical model matches

very closely with the simulation in HFSS and LCR meter values).

6.2.2.2 Configurations with these components

The next step is to build an equivalent circuit with these components

for executing the temperature based analysis. Although a few previous pieces

of literature assume a simpler series R-L-C model like Fig. 6.5a, we found out

that it does not reflect accurately in reality. For a given frequency f when

we measure the impedance of the RFID tag using Array Solutions Vector

Network Analyzer (VNA) [23] using an SMA connector. We observe that the

real components of the measured impedance vector change across di↵erent

samples at a fixed temperature, contrary to the series configuration. Because,

if the tag antenna has an equivalent circuit according to the Fig. 6.5a, i.e., a

simple series R-L-C model, then the real components should have remained

constant ( as the following equation gives the equivalent impedance: Zeq =

R + j(!L� 1
!C

)). Therefore, we create all 8 possible configurations, shown in
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Fig. 6.5 and compare their measured impedance values (through VNA) with

their simulated impedance values. We procure the simulated impedance values

from the impedance equations using the standard electromagnetic models. For

example, the impedance equations of Fig. 6.5e and Fig. 6.5b generally look like

these:

Zeq =
R

1�R2(!C � 1
!L

)2
� j

R2(!C � 1
!L

)

1�R2(!C � 1
!L

)2
(6.2.2)

and

Zeq =
R

1 + !2(R2C2 � 2LC) + !4L2C2
+ j

!(L�R2C)� !3L2C

1 + !2(R2C2 � 2LC) + !4L2C2

(6.2.3)

respectively. Fig. 6.6 illustrates the average error for impedance magnitude

of di↵erent configurations and shows that Fig. 6.5b provides the least error

for impedance magnitude prediction. For the experiments in Fig. 6.6, we

have selected copper dipole antennas of di↵erent area/length and measured

the impedance using VNA at a fixed room temperature. This selection of

parallel configuration instead of a series configuration also align with a few

recent works [153, 69, 66]. Therefore, for our modeling impedance of dipole

antenna in this chapter, we consider this configuration.

6.2.2.3 Temperature impact on impedance

If the physical parameter (⇤) (discussed in the previous section) is

temperature, then we first need to analyze the impact on the impedance. The

resistance of a given metal changes with the following equation [144]:

RT = R(1 + ↵(T � T0)) (6.2.4)
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Figure 6.6: Average percentage error in impedance magnitude among di↵erent
configurations in Fig. 6.5.
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Figure 6.7: Impedance prediction (Model vs VNA).

where, RT is the temperature at T degree centigrade, T0 is the room tempera-

ture, and ↵ is the temperature coe�cient of resistance change. We have chosen

copper for our dipole antenna design, and the value of ↵ for copper is 0.004041.

The following equation gives the change of inductance with temperature:

LT =
1

2⇡fw

p
⇡fµ0⇢

p
1 + �(T � T0) (6.2.5)

where µ0 is the magnetic permeability, � = 0.0034 per degree centigrade,

and T0 is considered as standard room temperature. Within our temperature
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prediction interest zone, the change of capacitance of metal strip is very mini-

mal [144], and we ignore that. For a given configuration, the impedance change

will be the resultant change due to the temperature variation and impact on

both resistance and inductance. We employ these values of resistive and in-

ductive components with temperature variation in our configuration model to

get the resultant impedance change. Then, we compare these results with the

impedance calculated using VNA. We observe that for di↵erent antenna di-

mensions (5cm and 30cm respectively), the model and the measurement match

very closely ( as shown in Fig. 6.7). We also see that there is expectedly less

impedance change for smaller area antenna (5cm compared to 30cm) because

there are smaller values of R/L/C. This insight motivates us to exploit the

antenna surface area for the di↵erential sensing purpose.

6.2.3 Mapping Impedance to Phase

Now, we need to map this impedance change to the manifested phase.

If we assume that r is the distance between the reader antenna and the tag

(Therefore, the signal traverses a total distance of 2r due to back-scattering).

Besides the phase change over distance, the transmitter, tag, and receiver

circuits will all introduce some additional phase o↵sets, denoted as ✓T , ✓TAG

and ✓R, respectively. The total phase change [35] observed by the reader can

be expressed as:

✓ = (
2⇡

�
⇥ 2r + ✓T + ✓TAG + ✓R ) mod 2⇡ (6.2.6)
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where � is the wavelength. ✓T + ✓R can be expressed as polarization

mismatch 2�(r̂). ✓TAG can be expressed as arg( 1
ZA+ZC(OFF ) �

1
ZA+ZC(ON)).

If we assume ZC(OFF ) ! 1 (i.e.practically very large) [68, 118], then the

above equation can be expressed as:

✓ = (
2⇡

�
⇥ 2r + 2�(r̂) + arg(� 1

ZA + ZC(ON)
) ) mod 2⇡ (6.2.7)

⇤ changes the tag antenna impedance thus, the phase will be expressed as:

✓ = (
2⇡

�
⇥ 2r + 2�(r̂) + arg(� 1

ZA(⇤) + ZC(ON)
) ) mod 2⇡ (6.2.8)

We now know that tag antenna impedance, dual tag chip impedance,

voltage leakage, tag to reader antenna distance, polarization mismatch, and

tag orientation impact the phase measurement at the reader side. In all these

factors impacting the phase measurement of the back-scattered signal com-

ing from the passive RFID tags, at a given location, we can assume that all

the factors except impedance change due to temperature change and variable

multi-path variation due to clutter, introduces a constant phase o↵set into the

over-all phase measurement. Now, for the time being, if we ignore the impact

of multi-path due to clutter, we can take the temporal phase di↵erence from a

single tag, and we can create an equation which only depends on the antenna

impedance change, like the following:

✓Diff. = arg(� 1

ZA + ZC(ON)
) � arg(� 1

ZA(⇤) + ZC(ON)
) (6.2.9)

121



30 40 50 60 70 80

Temperature

2.8

3

3.2

3.4

3.6

P
h

a
se

Model
Measurement

(a) Location 1.

30 40 50 60 70 80

Temperature

3.2

3.4

3.6

P
h

a
se

Model
Measurement

(b) Location 2.

Figure 6.8: Modeling phase change with temperature for 5cm width antenna.

Using this, we performed an experiment at a very small distance (within

10cm) (to ignore the clutter driven multi-path) inside an iso-temperature oven

(as described in the setup later) and recorded the phase measurement from

copper-based dipole tags of di↵erent areas. As illustrated in Fig, 6.8 and

Fig. 6.9, the model-based phase di↵erence measurement (✓Diff.) matches very

closely with the measurement-based phase measurement. We perform the

experiments at two di↵erent distances: 10cm and 15cm for a 5cm width and

30cm width antennas. Although there is a small variation in both figures (Fig.

6.8 and Fig. 6.9) due to multi-path artifact, the trends and the variation range

match relatively well. This validates our configuration based temperature to

phase modeling part. Now, in the absence of multi-path, we can ideally map

from the phase measurement values to the temperature values if we have initial

calibrated temperature reading. In the following sub-section, we introduce

the system overview of RTSense, which shows how the temperature can be

predicted accurately, even in the presence of the clutter.
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Figure 6.9: Modeling phase change with temperature modeling for 30cm width
antenna.

6.2.4 Phase Di↵erence Metric of RTSense

Context: To make RTSense robust for temperature prediction by using

this tag-antenna based sensing, we have to address the issue of multi-path.

The previously described model, inform us the following things: (i) Absolute

metrics like a raw phase or power threshold or received signal strength (RSS)

is setup-dependent and can not be used for any kind of generalized sensing

which has also been reported in a few recent works [70, 138, 66], (ii) Dif-

ferential sensing, i.e., taking the di↵erence with a reference value, is a more

robust way forward. However, any power-based metrics (like the received sig-

nal strength or minimum threshold power) depend non-linearly upon many

factors like antenna gains, transmitted power resolution, power transfer coef-

ficients, etc. (as described in Eq. 6.2.9 and Eq. 2.5.2). Therefore, di↵erential

phase-based sensing (due to more straightforward relation) is a more prag-

matic choice, (iii) Bigger the area of the dipole antenna (given a fixed length),

the impedance change is more significant (Fig. 6.7(b)) and thus the finer phase
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resolution. Building on these insights drawn from the model-design, we have

opted for di↵erential phase-based sensing through a tag-pair approach. In this

case, one of the tags amplifies the temperature impact by utilizing the bigger

surface area.

I

Q

Tag A

Tag B

Background

Tag Pair
Vector Difference

Figure 6.10: Tag vector phase di↵erence.

Defining Metric: As discussed earlier, the measured wireless parameters

(Pthreshold, ✓, �Prec etc.) are dependent upon many factors, namely from the

distance, orientation (both of the tag and the reader antenna), the type of

antennas (i.e., polarization mismatch), and the presence of reflectors in the tag

read range (i.e., multi-path). If we take the di↵erential sensing approach (i.e.,

the di↵erence between two consecutive readings of the same type), we can only

remove the static constant o↵sets like distance, orientation (both of the tag

and the reader antenna) at a single particular location/configuration; however,

we need to factor in the clutter-driven multi-path and di↵erent locations. To

address that, we opt for the tag pair approach as in [70, 178], where we select

two tags (say, TagBig and TagSmall) of di↵erent areas as di↵erent areas exhibit
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di↵erent impedance change (as Z(⇤)TagBig > Z(⇤)TagSmall
. Thus measured

phase change due to the temperature variation, as ZC(ON) is the same in

both tags due to the use of the same RFID chip/transponder.

We put these two tags very close-by (assuming there is similar mutual

coupling impact on both of them) such that the background reflected back-

scatter signals are similar, as illustrated in Fig. 6.10. We create the signal

vector coming from the back-scattered signals coming from the tag (by map-

ping RSS to the amplitude A and phase �) as A expj�. We then take the vector

di↵erence of two tag vectors, as shown in Fig. 6.10 and get the argument value

of that di↵erence. This vector di↵erence helps us eliminate the background

multi-path signal, as illustrated in Fig. 6.10. We collect these phase-vector

di↵erences of tag pairs for di↵erent temperatures and unwrap the value series

for temperature prediction. In the next section, we describe how we utilize

this phase di↵erence parameter for temperature estimation.

6.3 RTSense: System Design

In this section, we describe how we utilize the model-aided tag-pair de-

sign and the phase-based metric for temperature sensing in RTSense. Tem-

perature prediction system of RTSense tracking works in two stages: the

calibration stage and the estimation stage.

Calibration stage: The initial calibration step is performed during the

installation time. It is a simple low-cost step to record the phase di↵erence
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at the reader. During this step, Impinj R420 RFID reader continuously reads

the tag-pair at a rate of 200 reads/second, and records the phases of all back-

scatter responses. Note that this is one-time e↵ort and does not need to

be repeated even when the tag orientation or distance changes. RTSense

normalizes the phase-di↵erence (after unwrapping them) with respect to the

lowest value:

p(x) = r(x)�min
x

r(x), Tmin  x  Tmax (6.3.1)

where r(x) is the (unwrapped) raw phase di↵erence at temperature T , which

changes from Tmin to Tmax. We calculate the normalized rTagBig � rTagSmall

during the calibration step. The temperature and phase are measured af-

ter installing the copper tag-pair with a ground plane. RTSense then uses

polynomial curve-fitting to find the third-order polynomial that best fits the

normalized calibration data. This calibrated polynomial is used for tempera-

ture estimation, even if the location or orientation of the tag-pair and RFID

antenna changes. We apply the model calibrated using the data collected from

a lab to the measurement collected in a conference room and observe 0.9 de-

gree increase in the median error. This aspect suggests that calibration can

potentially be done once and used later in an environment-independent way.

To improve the temperature estimation accuracy through diversity, we extend

our system to use three antennas 1m apart to estimate the temperature. We

aggregate the estimations using a weighted average, and we call this approach

RTSense (Multi).

To exploit frequency diversity (called RTSense (FD)) with multiple
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antennas, we calibrate p(x) using 30 channels ranging from 860 MHz to 920

MHz (2 MHz apart). We use USRP N2100 with SBX daughter-board. We

capture the I/Q samples from the USRP to extract the relevant RF param-

eters. We use these calibrated polynomials to estimate the temperature and

aggregate the estimations using a weighted average.

Calibration Phase 
Difference Patterns

Phase Difference 
Measurement

Polynomial 
Regression based 

Temperature 
Prediction

Figure 6.11: Algorithmic overview of RTSense.

Estimation stage: At the estimation stage, we use the newly measured

phase di↵erence to estimate the temperature, as shown in Fig. 6.11. We record

the phase di↵erence during 10 second and take an average. Then we put this

average phase di↵erence in the previously calibrated polynomial regression

model to estimate the temperature. We can further leverage frequency diver-

sity to calibrate and estimate for each frequency and combine the estimation

results with improving the accuracy. We combine estimations from multiple

frequencies using the weighted average, where the weights are inversely propor-

tional to the RSS variation. A similar combination strategy is used to leverage
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MIMO diversity [148]. We combine estimations from multiple antennas in the

same way. We further compare with other combining schemes in Fig. 6.21.

6.4 Experimental Setup and Related Methodologies

In this section, we first describe the di↵erent experimental setups used

to validate various observations, which are critical in building the end-to-end

system of RTSense. Here we also describe other comparable methodologies

that can be utilized for RFID-based temperature sensing.

6.4.1 Setup

Oven Setup: While validating the modeling part of temperature

to phase of the copper-based dipole antennas, we experiment in a Fischer-

Scientific iso-temperature oven [6] (shown in Fig. 6.12). This oven gives us

the flexibility to fix the temperature and ensures that the temperature level

remains the same throughout the setup. We connect the 0.02inch thick copper

dipole antennas to the Vector Network Analyzer (VNA) [23] through the SMA

connector (Fig. 6.13a) and use it inside the oven for validating the modeling

part. Fig. 6.12 shows the experimental setup inside the oven and how the VNA

is connected. We use an arduino [2] based temperature sensor Fig. 6.13b) [3]

to capture the ground-truth of the temperature. This temperature sensing

reading is time synchronized with the reader software and the VNA through

a laptop.
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(a) Oven experiment.

VNA

Oven

Tag

Temperature 
Sensor

(b) Oven experiment with VNA.

Figure 6.12: Iso-temperature oven experiment setup.

Lab Setup: We also perform the experiments with COTS UHF

tags of four di↵erent varieties in the same oven experimental setup. The tags

are Alien-9654 Higgs 3 (Tag1), Smartrac Frog-3D (Tag2), Alien-9640 Higgs-

3 (Tag3), and, Alien-9768 Higgs 4 (Tag4) [18]. We also measure di↵erent

ground-truth values of L-C-R through an LCR meter [10], to compare with

our analytical model and Ansys HFSS software-based model. For performing

di↵erent experiments by changing the distance and the orientation, we use a

heat-gun in a cardboard setup, as shown in Fig. 6.14. We use the temperature

sensor in tandem to record the ground-truth, and the cardboard box is used

to contain the temperature in a closed space. We also perform the micro-

benchmark experiments by changing the orientation, distance, etc. in this

lab setup. Like the previous setup, the RFID reader, the temperature sensor,

etc. are connected and synchronized through a laptop. To support multiple

frequencies, we also use USRP N2100 [19] with SBX daughter-board [17] and

two antennas as a reader, as shown in Fig. 6.15.
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Figure 6.13: Di↵erent setup components.
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Figure 6.14: Experimental setup with a heat-gun.
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Figure 6.15: USRP Setup for RTSense (FD).
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Figure 6.16: Two types of tag design.

Tag Design: In the following figures, we show two possible designs

of custom copper tags used in RTSense. We create a simple copper dipole

antenna based chipped passive RFID tags. In one design shown in Fig. 6.16a,

we use the o↵-the-shelf transponder and carefully solder with the tag antennas.

We have to connect two of the transponder connections to the separate dipole

without shorting these for successful communication with the COTS reader.

In an alternative design depicted in Fig. 6.16b, we use a smaller loop chipped

tag (Alien-9613 Higgs-3) as the communicating element. The purpose of using

this type of design is to promote a more accessible building of custom RFID

tags for sensing purposes. If not specified explicitly, assume that we use the

second type of tag design.

6.4.2 Methodologies

In this sub-section, we describe di↵erent comparable techniques that

can be used for temperature sensing like RTSense. Although all these tech-

niques are not originally designed or proposed for temperature sensing, we use

these for comparison as these fall inside a similar landscape. Before discussing
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the exact metrics used in the methodology, we also provide a brief background

on a few parameters used.

Temperature Sensing with AID: An interesting metric has been presented

in [124, 68], where a new parameter, the Analog Identifier (AID), has been

proposed and evaluated. Through the intelligent combination of direct and re-

verse link power parameters, the AID attempts to eliminate the environmental

influence, and it is given by the following equation:

AID =
pc

2
p

PR TPthreshold

= ↵RC | 1

ZA + ZC

| (6.4.1)

where pc is the chip sensitivity (i.e., minimum amount of power (in dB) re-

quired to power up the chip which can be procured from the data-sheet), and

PR T is the back-scattered signal strength. However, inherently, AID su↵ers

from the limited resolution available both for Pthreshold (Eq. 2.5.2) and PR T

(0.25 dBm for Impinj R420 reader [25]) and the dependence on RSS, i.e., PR T

for value calculation. We calculate AID for both COTS UHF tags and copper

tags for temperature prediction in our experiments as this is a single-tag based

metric.

Temperature Sensing with single tag Phase Di↵erence (PD): Like

this paper [70] used the phase di↵erence metric for chemical sensing purpose,

we use the same metric ��(t) = �(t)��(0), where �(0) is the reference state.

We use similar calibration and regression based technique of RTSense, to

predict the temperature value using this single-tag phase di↵erence metric.
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Temperature Sensing with Di↵erential Minimum Threshold Power

(DMRT): Recently a paper [178] proposed to use a commercial UHF tag-

pair and to instrument one of the tags with a related sensor. We adopt this

hackable way for our temperature sensing use-case using the mentioned sen-

sor using Tag3, where we calculate the Pthreshold(A)� Pthreshold(B)(Eq. 2.5.2)

where TagA is the instrumented tag and TagB is not. This technique is power-

based technique like AID and non-real-time. It depends upon a set of tag-pair

like RTSense.

Temperature Sensing with tag-pair Phase Di↵erence (PPD): We also

compare with a variation of our phase-di↵erence based metric, but it just uses

the absolute phase di↵erence between tag-pair at the reader side without tak-

ing the vector based phase di↵erence. Specifically, for this metric, we calculate:

�TagA � �TagB where TagA is the tag with bigger antenna surface area (i.e.,

prone to more phase change w.r.t. same temperature change) and TagB is the

tag with smaller antenna surface area.

6.5 Implementation Details

Next, we describe the implementation detail of the tag designs and the

hardware used in RTSense. The RFID setup used in RTSense consists of

an ETSI-based Impinj R420 reader, which continuously queries the tag-pair in

the range at around 200 reads/second using circular polarized antennas with

9dBi gain [16]. We use 867.5MHz for our experiments and record the responses

of the tags at di↵erent temperature levels in both the oven and heating gun
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setup. Apart from this basic COTS reader setup, we implement a software-

based RFID reader [8] in USRP N2100 [19] with a SBX daughter-board [17]

with two circularly polarized antennas (in GNURadio v3.74). Then we col-

lect the I/Q samples of the reflected signal from the tag to extract the RSS

and phase of the signal. The USRP is necessary to support higher bandwidth

(e.g., 860 MHz to 920 MHz) to achieve higher accuracy. We also use the Vec-

tor Network Analyzer (VNA) of Array Solutions, which sweeps up to 1GHz

to measure the antennas’ impedance. The VNA is connected to the copper

dipole antenna with an SMA connector, as shown in Fig. 6.13a. We record the

impedance components in the connected laptop through simultaneous queries.

Apart from the tag and transponder used in RTSense, we also use

commercial RFID tags, as shown in Fig. 6.17. It operates between 860� 920

MHz. These tags include di↵erent types of dipole antennas, such as clover-leaf,

tip-load, T-match, and spiral shape. For AID and DMRT, we change di↵er-

ent power levels using LLRP protocol through JAVA SDK in Impinj Reader

and record the RF phase and RSS in all responses. In our frequency diversity

approach, we employ the frequency sweep of 80 MHz through a USRP based

implementation. We use 0.02 inch thick copper [4, 76] with a particular RFID

transponder [13] and the ground-plane of FR4 substrate [7]. We use Fisher Sci-

entific’s iso-temperature oven [6] in our experiments and an Arduino-based [2]

temperature sensor [3] in Fig. 6.13b to record the ground-truth temperature

for quantifying the sensing error. This temperature sensor module [3] has 0.5�
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C accuracy. We use a Macbook Pro running OS Sierra with a 8GB RAM and

i5 quad-core processor to process the data. We also try processing the data

on Raspberry Pi 3 Model B [14] with 1.2 GHz quad-core Broadcom processor

and 1 GB RAM. It takes around 1 second on the laptop and 6.5 second on the

Raspberry Pi 3 to process the temperature estimation data. Both processing

speeds are adequate for real-time monitoring.

6.6 Evaluation

We perform extensive experiments to evaluate RTSense. Initially, we

start with the basic observation of phase change with the temperature in both

COTS UHF tags and custom-designed copper-based dipole tags and justify the

design choice. We show a simple copper-dipole based tag-pair design that can

open up an exciting sensing opportunity. Next, we compare phase-based sens-

ing with other power-driven methods. We also show that multiple antennas

and frequency diversity also help improve sensing accuracy. We perform some

micro-benchmark experiments by changing the multi-path setting, distance,

area of the tag antenna, and orientation of the tag-pair relative to the RFID

antenna setup. We also show the performance of alternative curve-fitting based

techniques in the estimation stage of RTSense.

6.6.1 Rationale behind tag-pair design

Why not COTS UHF Tags? We start with COTS UHF RFID tags

with di↵erent types of dipole antenna design, as shown in Fig. 6.17. Fig. 6.18
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Tag1 Tag2

Tag3 Tag4

Figure 6.17: Types of COTS UHF tags used.

shows the phase change for the four types of tags when we vary the tem-

perature. As we can see, the phase does not change monotonically, making

it challenging for temperature sensing. The non-monotonic phase change is

primarily due to the complex antenna-design artifacts, which causes polariza-

tion mismatch and mutual coupling between tag antenna elements [122]. If

one looks carefully at Fig. 6.18, one can find out more variation in phase-

change patterns in Tag2 and Tag3. This phenomenon happens due to their

folded-dipole design, which influences two electromagnetic fields, and spiral-

design with T-match loading causes non-uniform current distribution [79, 60].

Since it is hard to modify antenna design and material used in COTS UHF

tags through fabrication, we choose to attach a rectangular dipole antenna to

COTS loop tags, which involves minimum modification. Therefore, the fun-

damental reason behind this behavior is the shape and the material used in

COTS UHF tags. Furthermore, because of this non-monotonic non-uniform
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behavior, the phase di↵erence metric between two di↵erent UHF tags with the

di↵erent areas will not yield good results.
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Figure 6.18: Single COTS UHF tag phase change pattern. Experiments are
performed in the oven.

Why area-based tag pair? We use a simpler antenna design (i.e., a

dipole antenna) with a widely-available copper. Our model suggests that un-

der the same temperature change, a larger antenna results in larger impedance

change and more phase variation. To further confirm this insight, we perform

an experiment by changing the antenna surface area of copper dipole tag from

2cm to 30cm while fixing the dipole length constant (17.30cm), which is equiv-

alent to half the wavelength according to [60, 122, 66]). Fig. 6.19 shows a

larger surface area yields a larger phase change. For example, 70 degree celsius

change results in 1.7 radian phase change in a 30cm wide dipole antenna, but

only 0.3 radian phase change in 2 cm wide antenna. Therefore, a larger cop-

per dipole-antenna based tag provides better resolution and higher accuracy
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in temperature sensing. We use a tag-pair to cancel out the impact of other

environmental factors.
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Figure 6.19: Phase change pattern of custom-designed tags with di↵erent ar-
eas. Experiments are performed in the oven.

Fig. 6.19 shows the phase changes increases with the antenna size.

Fig. 6.20 shows that changing the temperature from 15 degree celsius to 85

degree celsius results in 1.32 radian phase di↵erence in the 30cm-2cm tag-pair,

but only results in 0.3 radian phase change in the 10cm-2cm tag-pair. We

add the chip to this tag-pair design by attaching either a chip transponder

or smaller loop tags, as explained earlier. This phenomenon also makes the

design process simple. Note that we do not go beyond 30cm area since ex-

ceeding 30 cm will result in detuning. To reduce the surface area in certain

applications, one can fold the copper to reduce the area.
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Figure 6.20: Phase change pattern of a pair of custom-designed copper tags
with di↵erent areas in the oven.

6.6.2 Comparison with Other Methodologies

In this subsection, we compare RTSense with other methodologies

mentioned before. Before comparing with other methodologies, We first eval-

uate RTSense (FD), which uses multiple frequencies. In Fig. 6.21, we com-

bine the temperature estimations from di↵erent frequencies using the following

schemes: (i) assigning weights inversely proportionally to the signal strength

variation, i.e., giving more weight to the frequencies which have less variation

in signal strength at any particular temperature, (ii) assigning equal weights to

all frequencies, and (iii) selecting the maximum or minimum of the tempera-

ture estimations across frequencies. In all these combination schemes, weights

are normalized such that the weights sum up to 1 across all frequencies. As we

can see from Fig. 6.22, (i) performs the best and yields around 2.9� centigrade

median error.
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Fig. 6.22 shows that RTSense performs better than the other schemes.

We perform these temperature experiments using a heating-gun from 200cm

away. The median error of RTSense using one antenna is around 6�. Using

3 antennas (1 m apart) reduces the median error to around 4� (RTSense

(Multi)). Using 60 MHz bandwidth (consisting of 30 channels 2 MHz apart)

and 3 antennas (RTSense (FD)) further reduces the error to 2.9� celsius

by exploiting the frequency diversity. In comparison, AID and DMRT yield

around 24�, which is consistent with the 20 degree resolution and 32� error

reported by the authors of AID and DMRT. Moreover, the power changes

non-monotonically with the temperature, as shown in Fig. 6.23.

Besides, the power-based schemes degrade if there is a minor change

in the setup due to the impact of the multi-path and lower resolution of the

power level of commercial devices. According to Eq. 2.5.2, power is a non-

linear function of many factors, including the gain of tag-antenna and transmit

power, etc. Furthermore, this moderate resolution is also due to the coarse

power resolution. In our case, it is 0.25dBm in the Impinj RFID reader.

The range of DMRT or AID based metric is limited. For these two

methods, we only report the error up to 1.5m distance, which is the maximum

range we can collect the data. DMRT is not easy to repeat since it is sensitive

to the multi-path. Adding a sensor to the tag also detunes the tag heavily, and

the impact is amplified when the temperature changes, which may cause failure

in reading the tag. AID has limited accuracy due to the coarse resolution of

received signal strength and Pthreshold. Furthermore, performing a sweep across
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Figure 6.21: Temperature estimation error with di↵erent strategies in RTSense
(FD).
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Figure 6.22: Temperature estimation error with di↵erent strategies in RTSense
(FD).

di↵erent power levels is time-consuming. For example, it takes several minutes

to sweep all power levels for our reader.

In comparison, the phase-based metric performs better in terms of

range, resolution, robustness, and delay. RTSense works up to 3.5m range,
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Figure 6.23: Example patterns with temperature change.

even in non-line-of-sight. Interestingly, other phase-based techniques (namely

PD) also out-performs the power-based approach. As shown in Fig. 6.22, PD

yields a median error of 10� centigrade since it is sensitive to other environ-

mental change due to the lack of di↵erential sensing approach.

6.6.3 Micro-benchmark Experiments

In this subsection, we perform di↵erent micro-benchmark experiments

by changing the tag orientation, tag to antenna distance, and antenna surface

area. We also change the static multi-path by moving the furniture around

and perform experiments in di↵erent locations.

Impact of Distance: We first evaluate the impact of the distance on

RTSense. We change the distance of the antenna from 50cm to 350cm. We

calibrate the phase-di↵erence trend at 50cm distance. Fig. 6.24a shows that

although the temperature estimation error increases slightly with the distance,

142



(a) Distance change.

50 cm
100 cm

150 cm
0

10

20

30

T
e

m
p

e
ra

tu
re

 E
rr

o
r 

(°
C

)

RTSense (FD)
RTSense (Multi)
RTSense
PD
AID
DMRT

(b) Di↵erent schemes.

Figure 6.24: Temperature estimation error with distance change. Experiments
are performed using the heat-gun setup.

(a) Orientation change.
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(b) Di↵erent schemes.

Figure 6.25: Temperature estimation error with orientation change. Experi-
ments are performed with the heat-gun setup.

but the median error remains within 7.5� error even when it is 3.5m away. We

also compared with other techniques within the 1.5m range due to the range

limitation in power based schemes and observe that RTSense performs the

best, as shown in Fig. 6.24b. The error in AID or DMRT can go up to around

30� centigrade. We can further increase the sensing range by using a higher

gain antenna or MIMO technique (e.g., beam-forming [177]).
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Impact of Orientation: Next we change the tag orientation from

0� to 180� on a single plane, as shown in Fig. 6.25b. Since we use the tag-

pair based approach in RTSense, the polarization mismatch due to di↵erent

orientations cancels out. Therefore, we observe similar error range at di↵er-

ent orientations for RTSense, as shown in Fig. 6.25a. Fig. 6.25b shows that

the single-tag based techniques like PD or AID su↵ers significantly from po-

larization mismatch, and their errors can go beyond 30� centigrade. In this

experiment, we perform calibration at 100cm distance with 0� orientation and

measure at 100cm distance while changing the temperature.

Impact of Antenna Area Change: In this experiment, we perform

the calibration at 100cm away with 0� orientation and measure at 100cm away

while changing the temperature. We change the surface area of the larger

tag-antenna from 5cm to 50cm. As shown in Fig. 6.26a, 30cm is the optimal

in our copper-dipole tag-pair based setup with the COTS chips. Note that

the performance does not monotonically increase with the antenna size since

while increasing the antenna size increases the phase di↵erence between the

two antennas, but it can cause antenna and tag chip impedance mismatch,

which can degrade the accuracy. 30 cm provides a good trade-o↵ between

these two factors.

Impact of Calibration Location: To evaluate the dependence of

location in the calibration stage, we perform the calibration from the data
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(a) Antenna area change. (b) Temperature estimation error when
there is dynamic multi-path present.

Figure 6.26: Temperature estimation error with antenna area change and
change in dynamic multi-path. Experiments are performed with the heat-gun
setup.
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Figure 6.27: CDF of Temperature estimation error in RTSense(FD) when the
calibration is performed in same and di↵erent location respectively.

collected at a conference room and perform the estimation in another room

and vice versa. For these experiments, we have collected 5 sample runs at 5

di↵erent distances starting from 50cm and ranging up to 350cm. However,

we did not change the antenna orientation for these experiments. Fig. 6.27
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illustrates that the median temperature estimation error does not veer away

much, and the overall trend remains similar. The median estimation error

worsens approximately 0.9 degree when the location is di↵erent in calibration

and estimation stages.

(a) Location 1. (b) Location 2.

Figure 6.28: Temperature estimation error with static multi-path changes at
two di↵erent locations. Experiments are performed with the heat-gun setup
and multi-path change is performed by reorganizing the furniture.

Impact of Multi-path: To observe the multi-path e↵ect, we evaluate

in two di↵erent rooms. We observe that the error is in the same region, as

shown in Fig. 6.28. We also re-organize the furniture in each room across

di↵erent runs to change the static multi-path. Even if the calibration and

estimation distance remains the same, the phase-based schemes perform better

than the power-based schemes. Fig. 6.28a shows that when we change the

static multi-path, the median temperature estimation error in PD increases up

to 24� centigrade, but the error of RTSense, RTSense (Multi) andRTSense

(FD) remain around 6� centigrade (C), 5� C, and 4� C, respectively. The
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power-based temperature estimation techniques su↵er as shown in Fig. 6.28a

and Fig. 6.28b. In these experiments, we perform calibration at 150cm away

with 0� orientation and measure at 150cm distance.

Furthermore, in the bigger room, we create dynamic multi-path by hav-

ing a user move around and occasionally block the line-of-sight path. Fig. 6.26b

shows that PD has around 30� C mean error while RTSense (FD), RTSense

(Multi), and RTSense have around 4�, 5�, and 6� C mean errors, respectively.

Technique Median Error (�C)

LR 18.34

LR with Regularization 18.38

PR with Degree 2 8.13

PR with Degree 3 6.12

PR with Degree 3 (3 antennas) 3.8

PR with Degree 3 (with 60 MHz) 4.2

PR with Degree 3 (multiple with 60 MHz) 2.9

PR with Degree 4 7.29

PR with Degree 5 8.39

Table 6.1: Error in RTSense with Other Techniques.

6.6.4 Impact of Fitting Functions

In this section, we examine a few simple alternatives in the estimation

stage of RTSense. We conduct measurement in a conference room using the
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heating gun setup. We measure from 200cm away. We fit the measured phase

di↵erence and temperature using polynomial regression (PR) with degree 3.

Table 6.1 shows the results of other regression. In all cases, we use the data

collected from the ground-truth temperature. As we can see, the 3rd-degree

polynomial regression provides the best performance with a median error of

6.12� centigrade using narrow-band frequency; increasing the bandwidth to

30 channels reduces the error to 3.8� C; increasing the antennas to 3 reduces

the error to 4.2� C; using both high bandwidth and 3 antennas results in the

lowest error of 2.9� C. Linear regression does not work well since the data is

inherently non-linear. Using a too high order polynomial increases the error

due to over-fitting.
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Chapter 7

Conclusion

In this dissertation, we develop novel techniques to sense a wide array of

surrounding information. These include touch interaction, the environmental

temperature, and motion information of moving objects.

Firstly, we develop and evaluate Rio, touch, and gesture UI primi-

tive for smart spaces. Rio enables fine-grained touch tracking using COTS

RFID reader and tags, and low-overhead training and installation. Rio is

designed to be easily embedded into existing environments to turn them into

smart spaces. Our evaluations demonstrate that Rio is a robust touch and

gesture sensing primitive under various real-world situations. Rio also sup-

ports custom-designed RFID tags for a fully integrated UI design, and our

proof-of-concept applications highlight possible interfaces that can be built

with Rio. Furthermore, Rio is also the first step towards a novel battery-

free interface design and presents many opportunities for future exploration

into this space. Some possible extensions of our work include two-dimensional

gesture tracking, multi-touch tracking, etc. and custom interfaces built using

di↵erent materials.

Secondly, in RTSense, we develop an analytical model to understand
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how impedance and phase change with the temperature. We also propose a

novel approach that uses phase to sense the temperature. We implement a

customized tag-pair and measure the phase di↵erence of the received signals

from two tags with di↵erent sizes to estimate the temperature change. Our

evaluation shows the promise of our approach. As part of our future work,

we plan to improve accuracy by exploring antenna design, custom chip design,

and material selection. In this work, we start with the temperature sensing

in RTSense using copper tag-pairs, we would like to extend to sensing other

properties such as humidity and light. This solution can be achieved by select-

ing an appropriate material sensitive to the physical property being sensed.

Finally, in TIMU, we design a passive RFID-tag based motion-sensing

system for a moving ball using a single commercial-o↵-the-shelf antenna. To

our knowledge, it is the first battery-free sensing system that uses a single

RFID reader antenna to sense general motion. This solution is achieved by

leveraging the polarization and non-uniform antenna gains in the passive RFID

system. Our system can accurately estimate the rotation and translation mo-

tion of a moving ball. As part of our future work, we are interested in devel-

oping several applications based on our sensing approach.
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