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Abstract—In today’s always-connected world, we receive a
large number of notifications on our mobile devices. These
notifications cause interruptions, stress, and even impact users’
lifestyle. To understand how users respond to notifications, we
develop an application that monitors various features (e.g.,
importance) of the notifications, users’ actions, and the level of
users’ engagement with the notifications. We recruit 30 users to
use the application and monitor over 30 days, and subsequently
find that 20% to 50% of the notifications generally get ignored
by the users. In addition, we also solicit explicit feedback about
the importance of notifications from 12 users over 14 days and
identify the relation between perceived importance and users’
engagement level. Based on this study, we identify the key
characteristics of notifications and users’ engagement, which is
further substantiated by an online survey of 400+ users. In
addition, we develop a notification manager that includes a
machine learning based prediction model and that shows only the
important notifications and delays the unimportant notifications.
Our experimental results show that our notification manager
automatically assesses the importance of notifications with more
than 87% accuracy. We believe this work is a promising step
toward intelligent personal assistant that manages notifications.

I. INTRODUCTION

Modern mobile operating systems support notifications as
a mechanism to present a concise piece of information. Most
mobile applications today employ notifications for a variety
of reasons through different modalities (Fig. 1). For exam-
ple, apps like calendar use notifications to alert users about
upcoming events, gaming apps use notifications to increase
users’ engagement with their apps, and email apps let users
take quick actions via notifications to reply or archive a
new email. Since notifications are designed to be compact
and do not require users to launch the full app, notifications
have emerged as a popular mechanism to gain user attention.
While the notifications are useful, the uncontrolled surge of
notifications are known to cause unwanted interruptions [18],
distractions, and even stress [30] to the phone users. Studies
have shown that users are getting a prohibitively large number
of notifications [25], [4], [19], causing delay in on-going
tasks [15], and hampering lifestyle.

There have been several prior efforts at addressing some
of the issues. They have focused on addressing the ques-
tion of “when” to present a notification such that it causes
minimum disruption (i.e., selecting opportune moments to
notify users) [15], [11], and results in high user responsiveness
(i.e., how fast user react to a notification) [26]. Subsequently,
researchers have developed intelligent notification manage-
ment systems, such as InterruptMe [24], which tries to infer
opportune moments to interrupt from explicit user inputs and
sensor-inferred contexts, and Atillia [23], which infers the

interruption points automatically without using power-hungry
sensors. These studies are very useful, but users still get
unwanted notifications though at more appropriate times.
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Fig. 1. Different modalities of notifications in today’s smartphone.

Our online survey of 400+ users reports 92% users check
notifications on smartphones and only 25% of them are
completely satisfied with the current notification systems. Fur-
thermore, 66% users are interested in using a new notification
manager that automatically filters out unwanted notifications.
Clearly there is a need to design a smart notification man-
agement system that takes into account the user-perceived
importance of notifications. Using the perceived importance
of notifications as input, such a system can i) suppress or
delay a less-important notification to be presented later, ii)
re-order the notifications based on the rank of user-perceived
importance, and iii) select an appropriate mode of notifying
a user (e.g., sound, LED indicator, vibration) based on the
notification importance and user context.

The first step towards designing an importance-aware no-
tification management system is the ability to learn and pre-
dict user-perceived importance of notifications. In this paper,
we present a system to predict the likely importance for a
new notification generated by an app. This system leverages
various contextual information obtained from the phone and
the past user interactions with the notifications to predict
the importance for an incoming notification. An interesting
feature of our system is its ability to passively monitor user-
perceived importance of notifications without requiring any
explicit user feedback. The key intuition is that a user responds
to a useful notification in a meaningful manner (e.g., opening
the notification drawer). Based on the passive monitoring, we
learn a model that maps contextual features of a notification
to its perceived importance.

Our main contributions are summarized as follows:

e We present a user study conducted with 40 users and
analyze the data from 30 users having at least two weeks
of data to understand the notification usage on phones
(Sec. IV). We show that users ignore between 20-50% of
the notifications. We also conduct 400+ user online survey
through Amazon Mechanical Turk to shed more light on
the notification usage pattern.



e We present an approach to capture user-perceived impor-
tance of notifications (Sec. V). We compare the perfor-
mance of our approach with the explicit feedback from
12 users. Results illustrate that the explicit user response
corresponds well with the predicted implicit importance.

e We predict the importance of an incoming notification
using a set of 22 discriminating features. Results show
that our model achieves 87% accuracy.

We begin with background describing the existing approaches
for managing notifications. Next we describe datasets and
gained insights. Then we present the design, evaluation, and
implementation of a notification manager prototype.

II. BACKGROUND

In this section, we outline the existing approaches for
notification management and describe their limitations.

OS-level control: Most modern mobile operating systems
provide users with the control to block all notifications from
chosen apps. Our online survey with 400+ users indicate that
42% of these users filter notifications based on apps. However,
this approach provides limited flexibility because there are
apps like Facebook that generate a variety of notifications,
such as birthday alerts, new message alerts, and so on.
Users have different preferences depending on the type of
notifications even from the same app. If we build our learning
model (Sec. V) only based on app names, it yields limited
performance: 0.58 precision and 0.59 recall.

Do not disturb mode: This is another control provided by
the mobile operating systems, which allows a user to disable
all notifications from any apps while the do not disturb mode
is on. 22% of the surveyed users use this mode as their first
choice mechanism to avoid notifications. While this control
avoids interruption to users, it does not distinguish between
important and unwanted notifications. If hour of the day were
the only feature in our prediction engine (Sec. V) assuming
users put do not disturb mode at fixed hours of the day, it
would only achieve 0.57 precision and 0.56 recall, which
shows the inadequacy of time based mode selection.

Importance learning approach: Recently, a new set of apps
have emerged that incorporate intelligence to determine the
importance of a notification for its users. Inbox by Google
is such an app that manages emails and generates an email
notification only when it is considered important. This app
predicts email importance based on its content and the past
user interaction with the emails. According to our survey, cur-
rently around 10% of the users use this type of apps. However,
this approach requires developers of each app to develop their
own custom experience-sampling approach and a prediction
algorithm for their notifications. Our work avoids the issue
of app-specific changes to provide a general smart notification
management in an easy-to-use and privacy preserving manner.

III. DATASETS

We have collected data from users in two phases. In the
first phase, we analyze the current situation of notification

disruption. To this end, we perform a study by collecting no-
tifications coupled with many smartphone events, interactions
associated with notifications, sensor data, and app usage events
from 40 users via Notifbase app [3] (Fig. 2(a)) (approved
by IRB). The users consist of 11 undergraduate students, 23
graduate students, and 6 researchers. Among them, there are
7 females and 33 males. This dataset is called Dataset - I. In
the second phase, we collect explicit feedback of notification
importance by developing an app called Snotify [6] (Fig. 2(b)),
which collects data from 12 randomly selected users. This app
collects usage data along with users’ feedback. Furthermore,
we have also collected responses from online survey [5]
involving 400+ users through Amazon Mechanical Turk to get
an independent subjective understanding of notification usage
and management traits.

Dataset I: For this study, we have recruited 40 users by
installing Notifbase [3] (Fig. 2(a)) in their Android smart-
phones requiring at least version 4.4 (due to the need of
use of NotificationListenerService). This android app needs
Notification listening, Accessibility event listening and App
usage listening permissions (Fig. 2(a)). Out of 40 users, we
get 30 users with at least 14 days of usage as a few users
uninstalled the app or left the study. This dataset includes app-
usage, screen on/off, Wi-Fi status, headphone status, coarse
location using cellular towers, battery level, notification events
(post, clear, action), notification properties (time, title, id, style,
modality), notification shade opening or duration (through
accessibility service), ringer mode, calendar event, raw data
from accelerometer, gyroscope, proximity sensors (only 10
seconds of data recorded after notification posting to save
energy) and audio features of decibel and pitch recorded
from 10 seconds of data using TarsosDSP library [7] (no raw
audio data are recorded for privacy). We have recorded the
data in compressed format and sent the data to the cloud
server through secure https connections whenever Wi-Fi was
available to avoid cellular data usage charge.

Dataset II: To understand how users perceive the importance
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Fig. 2. (a). Notifbase screenshot with its permission dialog. (b). Snotify
feedback page screenshot.

of different notifications, in the second phase we have collected
explicit feedback of importance from users regarding the
notifications using Snotify app [6] shown in Fig. 2(b)). It also
runs on Android smartphones requiring at least version 4.4.
This app, like Notifbase, collect similar set of information.
This app requires the participant to give feedback about the
perceived importance of the notifications through the interface



shown in Fig. 2(b). Users can choose among three levels of
feedback: Neutral, Useless, Important (shown in Fig. 2(b)) as
feedback for a given notification or no feedback, which will

be marked as None. Users are regularly reminded to provide
feedback.

IV. UNDERSTANDING CHARACTERISTICS OF
NOTIFICATION USAGE AND MANAGEMENT

In this section, we present some of the insights gained
regarding notification usage based on the analyses done on
Dataset I from 30 users with more than 2 weeks of data. In
particular, we examine the user behavior while engaging with
notifications. And then we ask: are app developers good at
judging the importance of notifications for its users?
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Fig. 3. Daily notification events across 30 users in Dataset I. Unless otherwise
specified, all the box plots shown in this paper plot the mean at the center
and uses the length of the bar to reflect the 1.5 X InterQuartileRange,
whereas error bars in line or bar plots reflect standard deviation.

How frequently users receive and check their notifications?
First we look at the number of notifications received by users
in our study. Fig. 3(a) shows the distribution of daily number
of notifications received for each user in our study. We see
that an average user receives at least 60 notifications per day,
similar to the median value of 55 notifications as reported by
users in Online survey. Some users get up to 600 notifications
a day. Fig. 4 shows that a large fraction of these notifications
are received during the waking hours of the day between 8
AM - 10 PM. If not managed properly, these notifications
have the potential to disrupt an average user at least 4 times
per hour of the productive part of their day. Furthermore, we
found that only 5% of all the apps are responsible for 70%
of the notifications. These apps include apps like WhatsApp,
WeChat, Instagram, Gmail, Facebook Messenger etc.
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Fig. 4. Majority of the notifications are received during the waking hours
between 8 a.m. - 10 p.m. While users receive more notifications during the
early afternoon hours, they check notifications more afternoon onward.
Next, we examine how frequently users pay attention to
notifications in their daily lives. To examine this, we monitor

how frequently users check for the notifications by opening the
notification drawer on their phones. Fig. 3(b) shows that an
average user opens notification drawer at least 20 times a day,
and some users can check notifications as high as 260 times a
day which is still much lower than the number of notifications
received. We also found that an average user spends 15 minutes
per day checking notifications. From Fig. 4, we see that while
users receive more notifications during early afternoon hours,
they check their notifications more frequently late afternoon
onward, as shown in Fig. 4(b). In other words, the user
receptivity towards incoming notifications varies during the
course of the day. This is further substantiated when we
observe the duration where users put their phones into less-
disturbing modes such as Silent or Vibration. Fig. 5 shows
that users spend the major part of their day in less-disturbing
modes indicating their willingness to avoid or tolerate delays
in checking notifications.
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Fig. 5. Average daily hours in a specific mode (Silent mode/ Vibration
mode/Audible mode). Users put phones in silent mode for nearly 8 hours.
How do users engage with notifications? There are several
ways a user can engage with a notification. Understanding this
user engagement behavior is critical for designing an effective
notification manager. We classify the user engagement behav-
ior into the following classes:

® Read: A user spends some time reading the notification
but does not take any other actions. A user may read it ei-
ther in a notification drawer along with other notifications,
or on a lock screen if the notification is visible. We mark
notifications with such user engagements as Seen.

e Read and dismiss: In this case, a user spends some
time reading a notification and dismisses that notification
individually. To collect this information, we look for a
Dismiss event (from Accessibility service) coupled with
a Notification Clear event (through Notification Listener
Service) whenever a notification drawer is open. We tag
this engagement level as Dismissed only if the notification
drawer had been open for at least 5 seconds.

e Take actions: Many notifications provide users with an
embedded set of buttons to take quick actions. For ex-
ample, Email notifications come with actions, such as
“Archive” or “Done”. We use Accessibility Service to
monitor if user executed any action on a particular noti-
fication whenever a notification drawer is open. We mark
such instances as Actions.

e Launch an app: This is the highest level of engagement,
where a user launches an app corresponding to the notifica-
tion. To record this user engagement, we monitor notifica-



tion clear events triggered by a user click on a notification.
If we notice launching of an app, corresponding to the
clicked-upon notification, within 2 seconds of the click
event, we mark this engagement as Launched.

e [gnore: A user may ignore the notification, i.e., none
of the previous engagements have occurred. In such a
scenario, an application may remove the notification after a
timeout, or it may update the notification with new content
later. We mark a notification instance as Ignored if we do
not observe any of the above engagement, or when we
observe a notification clear event triggered without any
user intervention.

Fig. 6 plots the distribution of the various engagement classes
for each user in our dataset. It shows that i) 20%-50%
notifications are ignored by users, ii) 30% notifications lead
to the highest level of engagement (i.e., launch an app), and
iii) users pay some attention to around 60% of notifications.
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Fig. 6. Distribution of user engagement classes for 30 users. Users ignore
between 20 to 50% of all notifications.

How much is the attention span for reading notifications?
Now we study the user attention span i.e. the contiguous chunk
of time a user devotes to reading notifications . Fig. 7 reveals
that users generally spend around 1 to 20 seconds within a
notification drawer to browse through different information
posted. Moreover, this duration does not vary much with the
number of notifications in a drawer (Fig. 7(b)). This signifies
that the limited user attention should be used judiciously to
present important notifications first.
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Fig. 7. Distribution of the duration when a notification drawer is open for
reading notifications. An average user spends 10 seconds reading notifications.
This duration does not vary with increase in number of notifications.

Are app developers good at evaluating importance? An-
droid operating system provides app developers to assign a
priority level for a notification. The developers can assign 5

levels of priority ranging from MIN to M AX depending
on how important they judge a notification is for the end
user. Not surprisingly, most of the developers choose either
DEFAULT value or the higher priority values to attract
users’ attention, as shown in Fig. 8(a). Moreover, Fig. 8(b)
shows that the user response time does not vary much with the
notification priority. Therefore, it is not very helpful to always
use highest priorities to attract users’ attention.
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Fig. 8. Default priority of notifications and user response.

A. Summary

Our detailed analyses reveal the following observations: (i)
Users receive a large number of notifications: an average of
60 per day. (ii) Users take actions to prevent disruption from
many notifications by putting phones in silent mode. (iii) Users
engage with notifications in various ways and ignore many no-
tifications (20 - 50%). This motivates the need of automatically
filtering unimportant notifications. (iv) Users have a limited
attention budget (< 10 seconds). Motivated by this insight,
we show notification digest in a ranked order (Sec. VII).
(v) Apps tend to assign overly high priorities to notifications,
but these priorities do not significantly affect users’ response
time. All these observations lead to the conclusion that there
is a need for automatically ranking notifications based on its
importance so that users are disrupted less frequently and the
limited user attention can be used judiciously.

V. NOTIFICATION IMPORTANCE PREDICTION

In this section, we describe our approach based on su-
pervised classification to predict the importance of a notifi-
cation. To train such a prediction model, we need feedback
from the user providing ground-truth about the user-perceived
importance for each notification. However, soliciting explicit
feedback for each notification is cumbersome for the user.
Instead, our notification manager leverages a combination of
user-control method and a passive monitoring of user engage-
ment with any notification to implicitly infer its importance.
In the following, we first describe our approach to monitor
notification importance. Next, we present the contextual fea-
tures we use in our prediction model. Finally, we describe our
machine-learning based model to predict the user engagement.

A. Notification Importance Monitor

In this section, we describe our approach to capture user-
perceived importance using the empirical data collected from



TABLE I
COMPARING FEEDBACK AND ENGAGEMENT LEVELS

Dismiss Action Launch Seen (Response Seen (Response No Action

Time <10s) Time >10s)
Useless 66 56 76 78 379 785
Important 161 117 253 521 192 218

12 users in Dataset II where users contributed explicit feedback
for 4085 notifications over a period of at least 2 weeks.
User Control: In our dataset, we observed that the notifi-
cations generated by a set of apps, like calendar (android
calendar etc.), weather ( accuweather etc.), specific to a user,
were always labeled as important. We had 279 such instances
in our data. Similarly, we observed another set of apps, like
messenger (facebook messenger, whatsapp etc.) or mail based
applications (gmail, yahoo mail etc.), specific to each user,
whose notifications were never perceived to be important.
There were 285 such instances in our dataset. Based on these
observations, we propose presenting a user with an interface
where they can identify the set of apps whose notifications
are always (or never) important for them. In fact, our survey
among the 12 participants confirms this observation. Using this
approach, we know the consistent importance of notifications
for the selected set of apps.

Rule-based Implicit Feedback Monitor: For the set of apps
that are not selected above, we use a rule-based approach to
implicitly infer notification importance. We learn these rules
using the empirical data from our dataset. To learn these rules,
we first remove the notifications for apps from our dataset that
are always or never important. Next, we remove another 1180
instances where the users were neutral about the importance.
For the remaining 2341 instances, we extract the user engage-
ment with the notifications (ignored, read, dismissed, acted
upon, app launch), the time spent reading the notification, and
the time taken to respond to the notification as the features
in our classifier. Using these features, we learn a rule-based
classifier that classifies a notification as important if one of
the following conditions is met: notification is dismissed after
reading for at least 5 seconds, any action is taken on the
notification, a corresponding app is launched soon after the
notification is received, or the notification is read within 10
seconds of its arrival. The rest is considered as ignored. Our
rule-based classifier results in accurately classifying 86.29%.

B. Feature Extraction

Next we describe a set of 22 features (refer Table II) we
use in our model to predict importance of notifications. These
features are classified as follows:

Temporal Features: A typical user behavior in terms of
notification engagement varies throughout the day, as shown
in Section IV. Based on the time when a notification is posted,
we derive features, such as hour of the day, time segment of the
day (4 hours segment in a day), and weekends vs. weekdays.
For example, a work email notification during the working
hours is considered important but the same notification during
off-work hours may not be perceived as important.

User device activity based features: A user’s recent
activities on the phone can be a good indicator of whether the

user is going to pay attention to a notification. In particular,
we use the following features: (i) time elapsed since the last
notification was posted by any app or the same app, (ii)
time elapsed since the last time user interacted with some
notification or the same kind of notification, (iii) time elapsed
since the last time user used the mobile device, (iv) operating
mode of the phone: silent, vibration, or audible mode, (v) time
elapsed since the last time user used the app that generates the
current notification.

Location based feature: There are certain type of notifi-
cations that are found to be useful in specific locations. For
example, a notification reminding a person to play a game
is unlikely to be considered important at a workplace. Since
the exact user location is privacy sensitive, we use the user’s
coarse location based on cell-tower triangulation and cluster
the geographic locations into “places” of radius 200 meters,
and label these clusters as locations 1, 2, 3, etc.

Sensor data based features: Mobile devices come with
several sensors, such as microphone, accelerometer, and gy-
roscope. Using microphone data, we evaluate if a user is
in a noisy environment (more than 55 decibels) or not. In
noisy scenarios, a user is expected to be less responsive
to the notifications. Similarly, data from accelerometer and
gyroscope gives user context, such as if a user is walking or
stationary. We calculate the number of peaks in the smoothed
accelerometer data to detect walking (more than 2).

Notification based features: This set of features derived
from the notification content distinguish between the types
or the classes of notifications generated by an individual app.
Unlike [20], we do not record plain text of notification content
to protect user’s privacy. Moreover, the participants in our
Field study and Online survey had expressed some kind of
reservation against sharing content of the notifications (more
than 60%). Thus, we only record notification identifier (a
numeric identifier used by the app), an icon identifier (numeric
identifier of the icon displayed), title of the notification, and
one-way hash of words in the summary text of notification.
Many mobile applications use a unique notification identifier
or a unique icon to display the notifications for each type.
For example, Facebook mobile app uses a unique identifier to
display birthday reminders but uses another unique identifier
for a notification of a different type, such as wall post alert.

Feature Ranking: To understand the value of these fea-
tures, we rank each feature based on the information gained
by adding it for predicting the notification importance. We
use the InfoGainAttributeEval method from WEKA to derive
the information gain (IG) each of the attributes brings to the
overall binary classification of a notification as important or
not. Table II shows the average information gains of the
features. Our results show that the temporal features like hour
of the day or temporally local event based feature like last app
use are the most important features. Furthermore, notification
property driven features, location and calendar events are
also relatively important features in terms of information gain
results. However, activity level or sensor based features are
not that important, which suggests that we can build a good



TABLE II
FEATURES USED

[ Feature [ ID T Average IG |
Application name of notification 1 |0.326
Time elapsed since last notification clear time 2 10.226
Time elapsed since last notification post time 3 10.204
Time elapsed since last any app use time 4 10.201
Time elapsed since last any notification post time |5 | 0.165
Time elapsed since last app use time 5 10.159
Hour of the day 6 |0.142
Notification title 7 10.122
Ringer mode of phone 8 [0.113
Time elapsed since last this notification clear time |9 | 0.099
Time elapsed since last screen on time 10 | 0.095
Segment of the day 11 | 0.084
Weekend status 12 | 0.081
Location cluster 13 | 0.063
Notification Icon 14 | 0.060
Calendar event status 15 | 0.049
Last notification engagement level 16 | 0.048
Notification clearable status 17 | 0.031
Proximity status 18 | 0.024
Audio Level 19 | 0.019
Activity Level 20 | 0.009
Notification assigned priority 21 | 0.006
Notification word count 22 | 0.001

enough intelligent notification manager without continuously
recording sensor data.

C. Machine Learning based Prediction

We use the following machine learning algorithms in our no-
tification importance prediction: (i) C'4.5 based Decision Tree
model, (ii) random forest model, (iii) linear regression model,
(iv) support vector machine (SVM), (v) neural networks, (vi)
online learning with different loss functions in Weka [9], Mat-
lab (for neural network), and vowpal-wabbit [8] to predict if
the notification is important or not. Recall that a notification is
deemed important if a user interacts with the notification (takes
an action, launches an app, reads it for at least 5 seconds, or
responds to it within 10 seconds of its arrival. We train the
learning models using 22 extracted features. Decision tree uses
the information gain to select the feature at each branch for
classification. Random forest tries to average multiple decision
trees to reduce variance. Linear regression tries to find the
weight of each feature by solving Airqin® = btrain, Where
Ayrain and by.qq, are the feature values and ground truth
(e.g., 1 for interacted and O for ignored) in the training data,
respectively. After we estimate x using the training data, which
is the feature weights, we apply Aesex to estimate by, in the
testing data. SVM is another popular algorithm, which tries
to divide different categories of samples by maximizing their
gaps. Neural network is also a well-known machine learning
algorithm, which can support continuous non-linear functions.
We use a large portion of training data to train multiple
neural networks, each with different parameters, and then use
the remaining portion of the training data to compute the
estimation error and select the neural network parameters that
yields lowest error. This is possible since we know the ground
truth of all training data. The neural network is trained using
Levenberg-Marquardt algorithm [22]. We use ’mapminmax’
to normalize the inputs, use ’tansig’ transfer function for

hidden layers, and use "purelin’ as the output transfer function.
Furthermore, we also implement different online learning
models [8], which basically updates weights of the model
with every new example (i.e., Wpew < Woig +1 X (y — )
(where gy is the predicted class, y is the actual class, n is
the learning rate, and (y — ¢) is a simple loss function). We
have experimented with stochastic gradient descent method
(Wnew  Wora — NAQ;(w) ), hinge loss function ( max(0,
(1 —t) x §) ), and default squared loss function ( (y — )2 )
with different norms (L1 and L2).

VI. EVALUATION

In this section, we use notification importance prediction
model to predict two classes inferacted and ignored. We use
the following metrics to evaluate our model.

Accuracy: This metric measures the fraction of notifications
of which engagement levels are correctly predicted (number
of correctly predicted notifications as interacted (important)
or ignored (unimportant) / total number of notifications).
Precision: It calculates the fraction of notifications which are
correctly predicted as interacted (i.e., number of notifications
that are correctly predicted as interacted / number of notifica-
tions that are predicted as interacted). This indirectly measures
the disruption to the users because high precision means that
user will get less ignored notifications.

Recall: It measures the fraction of inferacted notifications that
are actually predicted correctly (i.e., the number of notifi-
cations that are correctly predicted as interacted divided by
the number of notifications that are actually interacted). High
recall means that users will not miss out on any interacted
(important) notifications.

F-Score: This measure is a combination of Precision and
Recall, which is calculated as 2--Precision x Recall "go. q)] foyr

. o _ Precision + Recall
metrics, larger values indicate higher accuracy.

A. Evaluating the Personalized Predictors

First, we evaluate the data-driven prediction models by
testing with the k-fold cross validation approach with k£ = 10.
That is, we randomly partition our notification dataset of each
user (30 users have contributed total 78,485 samples) (from
Dataset I) into k equal sized sub-samples and then out of the k
sub-samples, a single sub-sample is retained as the validation
data for testing the model, and the remaining k—1 sub-samples
are used as training data. The cross-validation process is then
repeated k times (the folds), with each of the k sub-samples
used exactly once as the validation data. The k results from
the folds can then be averaged to produce a single estimation.
So, this is a personalized k-fold prediction performed on each
user. We use four machine learning techniques from Weka
library, namely Random Forest with 100 trees, Decision Tree,
Support Vector Machine (SVM), and Linear Regression models
for predicting notification engagement classes, i.e.interacted
and ignored. As shown in the Fig. 9, the four techniques
trained with our 22 features perform similarly in terms of
different metrics. Overall average accuracy of prediction is
more than 87%. The result also shows that precision and recall



are more than 87%, which signifies that we will be able to
suppress unwanted notifications by not missing the probable
candidates of important notifications. Random Forest performs
best in terms of all four metrics and also shows comparably
less variation across users. On the other hand, decision tree
model performs best in terms of time without compromising
too much on accuracy. Therefore it has been selected for our
smartphone prototype implementation. In comparison, SVM
is the slowest.
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Fig. 9. Box-plot of Accuracy, Precision, Recall, and F-score of
engagement level prediction techniques of 30 users.

B. Generic vs Personalized vs Clustered Predictors

Next we compare the performance of the engagement pre-
diction model trained not only on a user’s personal data but
also with a generic prediction model trained on multiple users’
data and with a prediction model trained on clustered user data.
As we are not collecting any personal information from the
users due to privacy concern, we cluster the users using K-
means clustering algorithm based on the following feature set
(normalized): number of applications used, number of unique
locations visited, number of notifications received, and number
of each engagement levels. We build both personalized predic-
tors, generic predictors, and clustered predictors for predicting
notification importance by using four aforementioned machine
learning algorithms. For personalized prediction, we use 10-
fold cross validation. For generalized prediction, we partition
the data into two sets: training (containing 45,085 samples
from randomly selected 15 users) and testing (containing
33,400 samples from rest of the 15 users). For clustered
based prediction, we first cluster 30 users and employ 10-
fold cross-validation approach within each cluster (and report
the average result). As Table VI-B illustrates, expected gener-
alized model performs the worst across different measures in
different machine learning techniques. However, surprisingly,
even this naive cluster-based model performs better than the
personalized model. It is mainly because the cluster-based
model uses more training data. Unlike the generic model, the
training data in the cluster-based model are more similar to the
user’s personal data. This result is encouraging and indicates
that clustering provides a good sweet spot to benefit from both
the increase in the training data and the similarity between the
training data and testing data. Its benefit is even larger when
we consider users with little or no training data.

Furthermore, we build a neural network model using differ-
ent numbers of hidden units and different numbers of hidden

layers to predict the importance of notifications to test in
cluster-based situation. Fig. 10(a) reflects that the result does
not improve much after 15 hidden units for a single layer, but
the increase of hidden units do help in improving accuracy.
If we increase the number of hidden layers (each having 20
hidden units), we also see an increase in accuracy. Fig. 10(b)
illustrates that we get around 92% accuracy if we use 5 hidden
layers, which is a little better compared to decision tree based
or random forest based models.

TABLE III
ENGAGEMENT LEVEL PREDICTION USING GENERALIZED,
PERSONALIZED, AND CLUSTERED TECHNIQUES

[ ML Technique [[ Accuracy | Recall [ Precision [ F-Score |
Generalized Random Forest 0.79 0.79 0.79 0.79
Clustered Random Forest 0.95 0.95 0.95 0.95
Personalized Random Forest 0.91 0.91 0.90 0.89
Generalized Linear Regression 0.78 0.77 0.76 0.75
Clustered Linear Regression 0.92 0.92 0.92 0.92
Personalized Linear Regression 0.88 0.88 0.87 0.88
Generalized Decision Tree 0.80 0.80 0.80 0.80
Clustered Decision Tree 0.93 0.93 0.91 0.91
Personalized Decision Tree 0.88 0.88 0.88 0.89
Generalized SVM 0.72 0.73 0.72 0.73
Clustered SVM 0.86 0.86 0.85 0.84
Personalized SVM 0.80 0.80 0.80 0.80
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Fig. 10. (a) Average prediction accuracy across users using Neural
Network with different number of hidden units in a single hidden
layer. (b) Average prediction accuracy across users using Neural
Network with different number of hidden layers (having 20 hidden
units per layer).

C. Online Learning based Prediction

Fig. 11 shows the prediction accuracy of online learning
based models with different training batch sizes. In real world
cases, we may use online learning based methods for any
of the above discussed strategies (generalized, clustered, or
personalized) as new samples are coming in continuously. We
use vowpal-wabbit [8] tool to implement and test the feasibility
of an online learning system. We have tried different loss
functions (like stochastic gradient descent, hinge etc.) with
different norms (L1 and L2) in our implementation. However,
on an average (with different batch sizes), we get around 60%
to 75% prediction accuracy using different online learning
methods on our dataset. As we would expect, the accuracy
is around 10% — 20% lower than the offline clustered or
personalized learning models. Such accuracy can still help
to build a notification manager which can at least filter out
a considerable amount of unwanted notifications. The trend
in Fig. 11 shows that the model generally stabilizes when



the batch size is around 5000. Furthermore, SGD based loss
function performs better than other loss functions. It is due
to small batch sizes forces over-fitting, whereas larger batch
sizes impose over-generalization.
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Fig. 11. Average progressive validation loss across users on com-
bined data with different iterations using different Online learning
techniques with different batch sizes.

VII. SmartNotify: A NOTIFICATION MANAGER

Here, we present a simple notification manager (Fig. 12)
implementation and its preliminary evaluation. It pushes im-
portant notifications based on engagement prediction model.
This scheduler assesses the importance of notification through
the predicted engagement level of the notifications. The main
components are Context Monitor, which collects the contextual
data like location, phone events etc., Usage Monitor, which
logs the notification interaction events, Importance Predictor,
which predicts the notification importance using Weka [10]
by creating a C4.5 decision tree, and Notification Scheduler,
which shows the notifications in a ranked order based on their
engagement level in opportune moments. For simplicity, this
correct opportune moment is implemented by looking at the
application switch after regular intervals [24].

There are two ways to run the notification manager, which
offers a trade-off between privacy and efficiency. One way is
to run everything on the phone including building a classifier
using the training data (stand-alone). Another way is to let
the phone extract features, send them to a server, get the
classifier back from the server [1], and apply it to the incoming
notifications (client-server). We have implemented both on
Samsung Galaxy S3 having 1 GB RAM, Quad-core 1.4
GHz Cortex-A9 CPU (Android 4.4). We have calculated the
running time with internal code time stamps and measured
the power consumption through Monsoon power monitor [2].
As shown in Fig. 13, for both the stand-alone and client-
server versions, the feature extraction from 4000 instances
can be accomplished within 57 seconds and consumes only
0.07% of battery. In practice, the feature extraction is not
done in a single batch instead, but inferred passively upon
the new notification arrival taking only 14.25 milliseconds
per notification on an average. However, for the stand-alone
version, the decision tree building can take up to 2 minutes as
shown in Fig. 13(b), consuming around 23 Joule of energy per
run. We can save this delay if we can opportunistically send
data to server. This also saves power because it will consume
only around 18 Joule of energy through a client-server data
manager.
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Fig. 12. (a). SmartNotify Notification Digest Indicator. (b). Front-page
of SmartNotify app showing ranked notifications.
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Fig. 13. (a). Run-time of Feature Extraction in SmartNotify (for
both stand-alone and client-server). (b). Run-time of decision tree
formation in SmartNotify app (for stand-alone).

Next, we also look at how much notifications we can suppress
if we use SmartNotify. On an average, we can suppress around
45% of the generated notifications. If we tweak our system to
suppress more notifications, we might fail to show important
notifications instantly or vice versa, as illustrated in Fig. 14.
So, learning the sweet spot of suppression vs. accuracy is
important but left as a future work. However, to guard against
missing out anxiety, we have provided an option in the app so
that users can check all the notifications.
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Fig. 14. Trade-off between suppressing notifications and missing out
on important notification instantly.

VIII. RELATED WORK

Horvitz et al. inferred interruptibility accurately on desktops
by using context information, such as application usage, visual
and acoustical cues [15]. Igbal et al. built OASIS [14], [16],
which defers desktop notifications until it detects suitable
interruption moments in real-time. More recently, interrupt-
ibility research has also focused on mobile devices, with
detailed study of notification usage on smartphones [26],
[28], [29]. Mehrotra et. al. [21] improved this predictive
interruption method on smartphones using more contextual
information. Pejovic et al. [24] identifies appropriate moments
to interrupt using location, time of day, emotion, and response
time. However, this system requires information provided



manually. Attilia [23] automatically mines important usage
information to predict opportune moment of interruption. All
these interruptibility-based notification management systems
in these works focused primarily on understanding the inter-
ruption or the opportune time to interrupt. However, a recent
work [19], attempts to create association rules based on the
content of the notifications to reduce the notification load. But,
this system, unlike us, relies on explicit user input combined
with privacy-sensitive notification content.

Although interruptibility has been extensively studied, the
effect of user’s response to the notifications is under-explored.
However, previous work [25] has shown that the percep-
tion towards mobile notifications varies strongly. If apps
which are not perceived as useful keep sending notifications,
users become annoyed and consider deleting those apps [12].
According to a field study by Fischer et al. with 11 co-
workers[13], the user’s responsiveness is determined by mes-
sage content (e.g., how interesting, entertaining, relevant, and
actionable a message is). Unlike one may expect, the time
of delivery does not affect responsiveness. Sahami et al. [27]
conduct a large-scale study with more than 40,000 users,
and found that notifications from communication applications
are considered the most important which is also found true
in a recent application usage study [17]. Furthermore, the
closest to our work is a recent work by Merhotra et. al.
[20], which investigated the connection between notification
type and user acceptance. However, they have only gathered
information through artificial notification replays in controlled
settings while logging only coarse level of user engagement
(e.g.opening and dismissing an notification). They have not
also built a smarter notification manager based on the in-
sights.

IX. CONCLUSION AND FUTURE WORKS

In this paper, we observe that users get too many notifica-
tions on a daily basis, as app developers tend to assign the
highest priorities to most of the notifications. However, we
observe that we can suppress a large number of unwanted
notifications, if we can predict how users might engage with
the notifications. We develop a simple notification manager
that uses this machine learning based prediction engine to infer
the importance of the notifications. Our evaluation shows it
can achieve on an average 87% accuracy. Moreover, the core
prediction engine can also be used by other apps as a service
to determine the acceptability of a notification.

This notification importance prediction model can be used
in deciding on the display order of notification, modality
of notification (i.e., sound, vibration, or LED indication),
or selecting the device (e.g., smartwatch or smartphone) to
display upon. We are also interested in enhancing the accuracy
of our prediction by using more fine-grained user activities and
notification features. Meanwhile, we also want to minimize the
processing of personal data while achieving energy efficiency.
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